|   
		下方資料是幾年前在系上開授「自動控制」的翻轉教學課程時,讓學生在課前自我學習用的數位教材。 由於課程本身有以 
		R. Dorf Modern Control Systems 做為教科書,基本上這份教材是依循著課本章節內容和順序所編輯錄製出。   Chap 2  Mathematic 
		Models of Mechanical systems (pdf)Differential equations of physical systems (9:33min) (video)
 Linear approximation of physical systems (16:59min) (video)
 The Laplace transform (21:39min) (video)
 The transfer function of linear systems (14:17min) (video)
 Block diagram models -I (19:41min) (video)
 Block diagram models -II (15:32min) (video)
 Signal flow graph models -I (16:08min) (video)
 Signal flow graph models -II (7:30min) (video)
 Matlab commands (7:07min) (video)
 
 Chap 3  State 
		Variable Models (pdf)Five representations of a system -I (25:37min) (video)
 Five representations of a system -II (11:00min) (video)
 Solving differential equations (17:48min) (video)
 Transfer function to state-space (9:54min) (video)
 
 Chap 4  Feedback 
		Control System Characteristics (pdf)Error signal analysis (15:43min) (video)
 Sensitivity of control systems to parameter variations 
		(13:26min) (video)
 Disturbance signals in a feedback control system (15:58min) (video)
 Control of the transient response (11:29min) (video)
 Steady-state error (11:09min) (video)
 The cost of feedback (6:22min) (video)
 
 Chap 5  The 
		Performance of Feedback Control Systems (pdf)Standard test signals (17:58min) (video)
 Performance of second-order systems (31:37min) (video)
 Response of second-order systems (19:02min) (video)
 Effect of a third pole and a zero (14:37min) (video)
 The s-plance root locations (14:05min) (video)
 Steady-state error of feedback control systems (14:45min) (video)
 Performance indices (13:10min) (video)
 
 Chap 6  The 
		Stability of Linear Feedback Systems (pdf)The Concept of Stability (11:02min) (video)
 The Routh-Horwitz Stability Criterion (15:26min) (video)
 Routh's Tabulation - I (10:58min) (video)
 Routh's Tabulation - II (14:53min) (video)
 The Relative Stability (7:43min) (video)
 
 Chap 7  The Root 
		Locus Method (pdf)The Root Locus Concept (21:07min) (video)
 The Root Locus Procedure & Example- I (17:01min) (video)
 The Root Locus Procedure & Example- II (8:48min) (video)
 The Root Locus Procedure & Example- III (8:13min) (video)
 The Root Locus Procedure & Example- IV (7:05min) (video)
 Parameter Design by the Root Locus Method (25:10min) (video)
 Sensitivity and the Root Locus (7:49min) (video)
 PID Controllers (21:00min) (video)
 Negative Gain Root Locus (6:51min) (video)
 
 Chap 8  Frequency 
		Response Methods (pdf)Introduction -I (9:20min) (video)
 Introduction -II (9:43min) (video)
 Introduction -III (7:06min) (video)
 Polar plot -I (10:01min) (video)
 Polar plot -II (9:53min) (video)
 Bode plot -I (15:29min) (video)
 BP four factors -I (13:52min) (video)
 BP four factors -II (11:54min) (video)
 BP four factors -III (11:54min) (video)
 Bode example (19:35min) (video)
 Get G(w) graphically (8:16min) (video)
 Performance specification (10:40min) (video)
 
 Chap 9  Stability in 
		the Frequency Domain (pdf)Mapping contours (12:23min) (video)
 Cauchy's Theorem & Nyquist's Criterion (23:05min) (video)
 Example 1 (13:45min) (video)
 Example 2 (10:39min) (video)
 Example 3 (7:59min) (video)
 Example 4 (13:12min) (video)
 Gain margin and phase margin (19:21min) (video)
 Nichlos Chart (14:34min) (video)
 
   
		後記:「自動控制」作為控制領域的第一門課,為了建構整個架構,是導入了非常多的新觀念,加上課程中又大量使用工程數學所學的工具,因此不是那麼容易上手。不過課程基本上可分成數個區塊:
 
 System Modeling要對系統進行控制,首先需要瞭解系統的(動態)特性,而第一步,則需要建立系統的數學模型。動態系統種類繁多,質點和剛體的(運動)動態在「動力學」課程中涵蓋,簡單機械和電路系統的動態在「工程數學」常微分方程(ODE, 
		ordinary differential equation)課程中有提及,一般各類型物理系統的動態,則在「系統動態學」課程中講授。
 自動控制課程中,主要是討論線性非時變(LTI, linear time-invariant)和單輸入單輸出(SISO, 
		single-input-single-output)系統的動態,也因此,系統的數學模型常可以用常數係數的ODE來表達。「自動控制」課程中最常來做為example的,是機械的彈簧質量阻尼系統(spring-mass-damper)和電機電子的電阻電感電容電路電路(RLC)和OP相關電路。
 系統的數學表達法有很多種,「自動控制」這本課由ODE出發,以transfer function表達為主,另有block 
		diagram和signal flow graph等,前者是系統拆解或組合好用的表達,後者多在合併使用Mason's Formula。state-space則為後續現代控制課程使用的表達,有無比重要性。
 
 System Analysis - Time 
		Domain要對系統進行時域下的分析,首先需要求得表達系統ODE的解。若ODE以x為變數,則表示需要求得x(t)。ODE求解的方法很多,在「工程數學」課程中也有講授。
 在「自動控制」課程中,則著重在以Laplace方法來求解,以方便和後續S 
		domain的分析連接。以Laplace求解的方法有兩個特色,一為將微分方程變換為代數方程來處理,另一為這可以同時求得ODE解中general 
		solution和particular solution兩個部分。前者可想成由initial conditions (I.C.s)所造成的x(t),後者可想成input所造成的x(t)。在「自動控制」課程中,著重於input和output的關係,也因此在後續以transfer 
		function來表達系統和相關的分析中,並不考慮I.C.s所造成的影響。
 在以Laplace方式求ODE解時,經過partial fraction 
		expansion後,便可以清楚的理解,任意LTI系統的動態,可以轉化為一堆一階和二階ODE系統動態的線性合成。也因此,課程中僅需要清楚的教導一階和二階系統的動態,高階系統的表現便可以接續直接推估。
 要進行系統時域下的分析,則需要建立系統時域下表現的指標,有一般綜合的穩態和暫態的指標,也有一階和二階系統的標準指標。
 
 System Analysis - S 
		domain由於課程中是以Laplace方式來看系統,因此時域和s域的分析常相輔相成,基於一階和二階合成的機制以及兩域之間僅是Laplace和inverse 
		Laplace的轉換,不需要仔細繁瑣的求出x(t),在s域下以pole和zero的分布便可以推估整體系統的穩定性和動態特性。也因此,系統的設計和調控,可以便利的在s域下進行,Root 
		Locus是一個方便的工具。另一方面,以往Routh 
		Hurwitz用來判別系統穩定性的方便性,因現今電腦強大運算能力可直接求出系統數值解而逐漸式微,Routh 
		Hurwitz的價值,落在於有包含未知數的系統,這部分,便類似於Root Locus,也可把Routh 
		Hurwitz找出系統針對某參數可以穩定的區間當成Root Locus其中一個功能。
 
 System Analysis - 
		Frequency domain相較於s域複數空間較為抽象,將系統以Fourier Transform轉換到頻域後的行為則較易想像。Bode 
		diagram迄今仍為分析系統動態的重要工具,另一方面,Nyquist則類似於Routh 
		Hurwitz,數值運算發達後這個工具的用處就逐漸式微。
 
   
		       
		
		要控制系統,需建立模型和瞭解系統動態,開始導入controller,在s域下增加pole和或zero而改變了系統在時域和或頻域的表現。因此,三域的分析,常需合併處理。有一個由University 
		of Michigan建構的網站Control Tutorial 
		for Matlab & Simulink,是一個瞭解整個流程的好教學網站,網站上提供多個系統的實做案例,且每個案例均有涵蓋課程中所提及多個分析技術。若已經大略知理解「自動控制」課程內容,這個網站可作為一個好的收尾練習。 |