

、 別言

回顧 1973 年 · Waseda 大學的 KATO 團 隊開發出 WABOT-I 人形機器人 [1] · 使得 人們開始慢慢的對人形機器人產生興趣 · 自此人形機器人這個名詞在日常生活中並 不陌生 · 到了 1990 年代 · 許多團隊紛紛開 始對於人形機器人進行研究 · 各單位也先 後釋出研究成果 · 機器人產業逐漸露出了 檯面 · 近年來 · 機器人產業还漸露出了 檯面 · 近年來 · 機器人產業在日本、韓國 與美國等國家均有進步的技術發展與研究 成果 · 包含由日本本田公司 (Honda) 所 製造的 ASIMO[2]、日本產業技術綜合研究 所 (AIST) 開發的 HRP 系列 [3-6]、以及 韓國 KAIST 的 KHR 系列 [7-9] 等 ·

Unit : mm 346 225 253 35 Waist 95.5 Hip Hip Pitch 51 Total 240 Thigh length: Knee Pitch 700.5 125 240 Shank Ħ Ankle Pitch 30 125 The height of ankle

雙足機器人相較於輪型機器人更能在崎

▲圖1 雙足機器人真實尺寸圖

嶇的路面上行走,然而如何讓人形機器人穩定行走、轉彎甚至跑步等動作,都是開發過程中所會遭遇的 困難。和工廠中的機械手臂不同,雙足機器人並非固定在地面上,因此雙足機器人在行走時非常容易因 為力的不平衡而傾倒。雙足機器人身上的自由度非常多,不考慮上半身的情況,雙腳大致有 10~15 個 自由度,每個桿件之間的結合方式也不盡相同,要用數學模型來描述整體機器人的運動相當困難,因此 我們在數學模型上作適度的簡化,規畫出可使機器人穩定步行及轉彎的動作軌跡,並藉模擬與實驗來確 認軌跡的正確性。

在本研究中·機器人計畫目標的身高體重為 120 公分、60 公斤。腳長(腳踝關節到髖關節的長度) 為 480mm 約佔身高的 40%,其中小腿長和大腿長各為腳長的一半 240mm。腳踝關節到腳底板的高度 為 125mm。髖關節到腰部的連接機構高度為 95.5mm。圖 1 為本研究的雙足機器人尺寸圖。

二、 步行軌跡設計

當機器人行走時,為了保持平衡,其全身零合矩點(Zero-Moment Point,簡稱 ZMP)[10]必須落 在腳掌支撐平面之內。在機器人行走過程中,大致上可分為單腳支撐階段和雙腳支撐階段,由於在兩階

段中的動力學模型不同,所以這兩個階段必須分開考慮。

機器人從靜止開始,經歷一連串的步行,最後回歸靜止的過程,可以分割成數個階段,其階段流程如圖2所示,包含從一開始的蹲下,把重心位從雙腳中央移動到其中一支腳上,開始走路前的一小段暫停, 跨出第一步,雙足支撐階段,單足支撐階段,最後一步,將重心移動回雙腳中央,站起回到初始狀態, 結束步行到關閉程式前的一段緩衝時間。

要推導機器人在單足支撐階段的動態方程式時,先做幾個簡化假設。假設一、全身質量集中在質心上; 假設二、機器人的腳無質量,腳和地面接觸點為一可旋轉關節;假設三、地面的摩擦力足夠大,腳掌和 地面無相對滑動;假設四、只先考慮二維的 xz 平面。在此假設下,機器人可以簡化為如圖 3 所示的倒 單擺模型。

產生質心在單足支撐階段之軌跡時,為了簡化演 算複雜度,假設機器人在運動時,質心 z 方向的高 度始終保持一定,此假設之動力學模型稱為線性倒 單擺模型。

在雙足支撐階段的質心軌跡,則是用多項式 (Polynomial)建接兩個倒單擺模型。如圖4所示, 前面的單足支撐階段為SS1,後面的單足支撐階段 為SS2,SS1和SS2中間為用多項式連接的雙足 支撐階段(DS)。多項式的初始條件為SS1的終端 狀態,多項式的終端條件為SS2的初始狀態。

專題報導

▲圖4多項式連接兩個線性倒單擺型

定義步行過程中的每個階段後,質心軌跡依照 每個步行階段的不同的動力學模型而進行規劃。 依據每個階段的規畫出的質心軌跡,設計出兩腳 底板在步行過程中的軌跡。有了質心軌跡和雙腳 腳掌軌跡後,用逆運動學即可求得全步行階段中 馬達轉角的軌跡。根據質心軌跡與腳板軌跡,用 動力學演算出ZMP軌跡,當ZMP軌跡落在腳掌 的支撐範圍內時,機器人就能保持平衡,即完成 整個步行軌跡產生流程。機器人完整的步行軌跡 規畫流程如圖5所示。圖6為全步行中之雙足支 撐階段模擬圖。圖中綠色線條為機器人質心軌跡, 紅色圓圈為關節位置,左腳為紫色線條,右腳為 深藍色線條,粗黑色線條為兩個髖關節的連線, 細黑線條為ZMP軌跡,淺藍線表兩髖關節的婆態。

三、 轉彎軌跡設計

人形機器人的研究中,如何讓機器人的動作更 貼近於人類真實運動是一個重要的課題,因此除 了直線行走步行外,其他的動作也陸續成為研究 的方向。而若考慮平面運動的完整性,除了前進 後退的運動外,還必須加上方向調整,因此在步 行運動成功被開發後,研究上,機器人的轉彎運 動也開始受到關注 [11-14]。

在此,本研究完成步行軌跡的設計開發後,進 而設計規劃機器人轉彎軌跡。在轉彎步態設計, 依據質心運動狀態區分為原地轉彎與邊走邊轉。 原地轉彎為機器人由靜止站立姿態開始執行轉彎 動作,完成轉彎動作後站立靜止,無需考慮線性 倒單擺模型;邊走邊轉為機器人同時執行步行與

▲圖5步行運動軌跡的產生流程

轉彎動作,使用線性倒單擺運動模型進行設計。 以下分別討論此原地轉彎與邊走邊轉的軌跡設計 開發。

I.原地轉彎

原地轉彎設計時,而根據身體姿態和腳部姿態 的旋轉時間點不同,可分成三種運動模式:身體 姿態先轉 (Body turn first)、腳部姿態先轉 (Leg turn first)、身體與腳部姿態同時轉 (Simultaneity turn)。圖 7 為三種原地轉彎模式上視圖。

TECH FEATURES

創刊歴程

專 題

報

道

術專欄

市場焦點

廠

商園

地

國際視窗

活動快報

本研究所開發之機器人因其機 構設計,兩腳在 Hip Yaw 軸向 轉動範圍介於-40 度至+40 度 之間。由於身體姿態先轉和腳部 **姿態先轉模式**,轉動皆僅是藉由 單腳 Hip Yaw 軸向馬達旋轉, 因此轉向的最大角度被限制在 40 度內。不過在腳部姿態先轉 彎模式下,可藉由轉動第一階段 的擺動腳踩點,決定身體在轉彎 時的動作範圍,相較於身體姿態 先轉·此模式在身體的運動範圍 的限制較小。若機器人執行轉向 角度大於40度的原地轉彎時, 可採用身體與腳部姿態同時轉的 模式,兩腳之 Hip Yaw 軸向馬

達皆貢獻了一半的轉向角度 使得機器人的最大轉向角度為前兩種模式的兩倍 最大可轉彎約80度左右。

Ⅱ.邊走邊轉

邊走邊轉的模式下,機器人同時進行步行與轉彎 動作,因此在規畫邊走邊轉的軌跡時,必須考慮線 性倒單擺模型來進行設計。運動過程為機器人先步 行幾步後,銜接邊走邊轉的軌跡,最後再步行。 詳細過程包含轉彎前步行之單足支撐階段、轉彎 第一階段雙足支撐(TDS1)、轉彎第一階段單足支 撐(TSS1)、轉彎第二階段雙足支撐(TDS2)、轉彎 第二階段單足支撐(TSS2)、轉彎第三階段雙足支撐 (TDS3)和轉彎後回復步行之單足支撐階段。運動流 程如圖 8 所示。

邊走邊轉時質心軌跡的設計如同步行軌跡設計, 利用線性倒單擺模型加上座標轉換,設計轉彎單足 支撐階段間的質心軌跡,得到每個單足支撐階段初 始及終端的質心位置、速度、加速度後,利用五次 多項式連結出雙足支撐階段的質心軌跡,最後藉由 參數調整得到最圓滑的質心軌跡。圖9即表示機器 人步行一個 Step 後,右轉 30 度,最後步行一個 Step 的轉彎模擬等角視圖;圖中三個時刻分別為開 始、TSS1 與結束,綠線為質心軌跡、紫線與深藍線 條分別為左右腳,粗黑線條為腰部。

▲圖8邊走邊轉動作階段流程圖

▲圖9機器人邊走邊轉模擬等角視圖

以右轉 30 度為例,當機器人步行運動至單足支 撐狀態後,進行轉彎第一階段雙足支撐 (TDS1), 此時左腳和右腳之 Hip Yaw 軸向的馬達皆旋轉 -30 度,使得身體姿態右轉 30 度。在轉彎第一階段單 腳支撐 (TSS1)時,右腳為擺動腳,其 Hip Yaw 方 向的馬達回轉 30 度,將右腳姿態右轉 30 度。而 在轉彎第二階段單足支撐 (TSS2)時,擺動腳為左 腳,其 Hip Yaw 軸向馬達旋轉 30 度回正,將左 腳姿態右轉 30 度,最後再繼續銜接步行動作。

四、 運動模擬結果

由前述的理論基礎設計步行及轉彎運動參數, 可透過 Matlab 計算出機器人軌跡,而在讓機器人 實際執行之前,必須盡可能確認該軌跡可讓機器 人在實際環境下穩定步行及轉彎。在本研究中, 使用 Matlab 及其 Simulink 模組和 Adams 進行 運動模擬。運動模擬的流程,先利用 Matlab 演算 繪圖進行機器人整個運動過程機構幾何的模擬, 確認幾何上的軌跡合理後,再將機器人軌跡輸入 Simulink 模組,透過 Simulink 與 Adams 的連結, 在 Adams 內進行外力下動態模擬,觀察 Adams 動態模擬出來的結果,確認所規劃之運動軌跡是 否能使機器人保持平衡穩定動作。

如圖 10 · 在 SolidWorks 軟體下繪製好雙足機 器人腳部機構後匯入 Adams。接著建立機構的 連結關係 · 設置驅動器到各個關節上來控制關節 轉動。最後 · 設定機器人的腳與地面的接觸關係 並調節重力場的大小與方向 · 讓機器人能夠藉由 地面的摩擦力以及正向力 · 模擬在地面上行走。 在 Adams 模型建構完成後 · 將 Adams 模型納入 Simulink 中 · 由 Simulink 輸入先前所生成的步行 軌跡進行模擬。

Adams 進行模擬時,我們使用兩種不同的輸入 控制,角速度輸入控制及扭力輸入控制。如以角 速度作為輸入時,Adams 視為使用者擁有極大效 能的驅動器,每個時間點下的角速度均符合使用 者的要求,缺點是此方法較不實際。扭力輸入的 優點在於會比較接近實際的情形,不過會衍生出 許多複雜的計算過程;在此研究先行測試以角速

▲圖10 建構Adams模型步驟

▲圖11 Adams中·角速度輸入控制行走模擬

度的輸入作為驅動端,以了解是否機器人會跌倒 或是有其他的問題,接著再修正軌跡,如果以角 速度輸入模擬成功時,則再進行扭力輸入作為驅 動端,並在 Matlab simulink 的方塊圖下安置 PID 控制器來控制機器人運動。

由圖 11 為角速度輸入 Adams 的模擬成果 · 機器人初始時在地面呈現直立的姿勢 · 接著各軸將因為驅動器的建立依照軌跡規劃的角度旋轉 · 並達成機器人行走的目標。

TECH FEATURES

圖 12 為角速度輸入控制行走 模擬時,機器人 y 方向 ZMP 軌 跡圖。線線為 y 方向 ZMP 軌跡, 藍線內灰底部分為穩定範圍,在 加入與地面碰撞的因子後,機器 人 ZMP 軌跡皆符合理論所述, 完全落在腳掌支撐平面內,所以 保證機器人可以穩定的在地面行 走。

扭力輸入控制模擬時會產生許 多的誤差 · 當取樣時間太長或是

▲圖12 角速度輸入控制行走模擬時,機器人y方向ZMP 軌跡圖

動作過於劇烈時均有可能造成模擬失真,所以在一開始使用扭力輸入控制時,先將在 Adams 裡的機器 人模型的腰部固定住,減少其不穩定性,簡單的測試各軸經過 PID 控制器控制的效果。然而,實際的機 器人的架設也與模擬設定相同,機器人的腰部架設在穩定的架子上,觀測模擬的成果來修改每一次規劃 的軌跡,接著再輸入修改過後的軌跡藉由程式來控制機器人運作。輸入雙腳各軸旋轉的軌跡來做回授控 制。而模擬結果顯示各軸的誤差幾乎都在1度以內,確認動作的正確性,軌跡規劃達成所希望的目標。

由於機器人步行軌跡與轉彎軌跡規畫的設計控制參數大致上相近,且在 Matlab 的模擬下其參數的調整無太大差異下,可以預期轉彎軌跡亦可如同步行 軌跡,動作可以符合設計的目標。

五、實驗測試

在經過 Matlab 與 Adams 的模擬,確認軌跡的 規劃的正確性後,將軌跡實際交由機器人執行。但 由於模擬模型無法完全考慮機器人實體機電系統與 機構可能遭遇的問題,因此在確保並提升穩定度而 足夠讓機器人動作時不會傾倒的前提下,實驗時, 機器人所執行為較為靜態慢速的動作。

步行實驗中,蹲低高度為 2cm,一步長為 0.1m, 每一步的週期(一次雙足支撐與單足支撐)為 5.4 秒,從第一步到最後一步共步行 1.3m。圖 12 是 機器人步行實驗的側面截圖。原地轉彎實驗中,進 行三種模式包含身體姿態先轉、腳步姿態先轉及 身體與腳步姿態同時轉,分別左轉 10 度。圖 13 是原地轉彎的實驗截圖。邊走邊轉實驗中,步行 3 個 Step 後,連續 4 次右轉 20 度,再步行 1 個 Step。圖 14 是邊走邊轉的實驗截圖。

專題報導

六、結論

在此研究中·藉由線性倒單擺模型和運動學·規畫設計人型機器人的步行、三種模式的原地轉彎及 邊走邊轉·並利用 Matlab 軟體計算出步行與轉彎時的馬達軌跡。再者·透過 Matlab、Simulink 與 Adams 軟體的模擬·確認所生成的軌跡符合設計預期。最後·由實驗室所開發的人形機器人執行步行 與轉彎軌跡·機器人可以穩定地完成給定動作。

由實驗可得,目前的機器人第一步後可穩定步行至少10個 Step,每一步距約10cm,在開回路控制 下最快的步行速度為0.018(m/sec)。而原地轉彎三種模式,皆可轉彎至30度。邊走邊轉的軌跡亦可達 成連續30度轉彎。

七、未來展望

在機器人軌跡產生方面,本研究提供的步行方式使用倒單擺模型,未來可以考慮與評估使用其他方式 產生行走的步態。在模擬的部分,需要加入六軸力規、IMU、加速規等感測器的回授訊號,使模擬中的 機器人行走的更加穩定。程式的部分,建構出機器人整體控制程式的架構,加入感測器的回授系統,如 腰部的傾斜控制、腳掌落地時間控制、ZMP 位置控制、擺動腳的角動量補償控制等等。並完成更多的 運動控制程式,如加入走斜坡、上下樓梯等機制,使機器人更能在真實環境中行走,為往後的目標。

八、 Reference

[1] 早稲田大学ヒューマノイド研究所. Available: http://www.humanoid.waseda.ac.jp/index-j.html [2 Honda, Asimo. Available: http://world.honda.com/ASIMO/

- [3] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, and T. Isozumi, "Design of prototype humanoid robotics platform for HRP," in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, 2002, pp. 2431-2436 vol.3.
- [4] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi, "Humanoid robot HRP-2," in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 1083-1090 Vol.2.
- [5] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, "Humanoid robot HRP-3," in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 2471-2478.
- [6] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita, and F. Kanehiro, "Development of humanoid robot HRP-3P," in Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 2005, pp. 50-55.
- [7] KHR. Available: http://hubolab.kaist.ac.kr/index.php
- [8] P. Ill-Woo, K. Jung-Yup, P. Seo-Wook, and O. Jun-Ho, "Development of humanoid robot platform KHR-2 (KAIST humanoid robot-2)," in Humanoid Robots, 2004 4th IEEE/RAS International Conference on, 2004, pp. 292-310 Vol. 1.
- [9] P. Ill-Woo, K. Jung-Yup, L. Jungho, and O. Jun-Ho, "Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO)," in Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 2005, pp. 321-326.
- [10] M. Vukobratovic and B. Borovac, "Zero-moment point thirty five years of its life," International Journal of Humanoid Robotics, vol. 1, No.1, pp. 147-173, 2004.
- [11] E. Kim, T. Kim, and J. W. Kim, "Three-dimensional modelling of a humanoid in three planes and a motion scheme of biped turning in standing," Control Theory & Applications, IET, vol. 3, pp. 1155-1166, 2009.
- [12] H. S. Shengjun PENG, Hongxu MA, "A Simulation and Experiment Research on Turning Gait Planning of Blackmann-II Humanoid Robot," presented at the 8th IEEE International Conference on Control and Automation Xiamen, China, 2010.
- [13] K. Miura, M. Morisawa, S. Nakaoka, F. Kanehiro, K. Harada, K. Kaneko, and S. Kajita, "Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots," in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, 2009, pp. 596-603.
- [14] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, "A realtime pattern generator for biped walking," in Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on, 2002, pp. 31-37 vol.1.