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We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First,
force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the
cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the
model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular
shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally
validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.

1. Introduction

After millions of years of adaptation in the natural envi-
ronment, animal legs have evolved and diversified their leg
morphology into various forms.Though the appearance may
be different, the main function of the legs still lies in enabling
animals to negotiate widely diversified natural terrains.
Thus, how the individual leg moves and how the legs are
coordinated are both critical and fundamental biomechanics
questions. Previously, the researchers found that, no matter
how many legs the biological systems have, their dynamic
running locomotion in the sagittal plane can be approximated
by a simple mathematical model, “SLIP” (Spring-Loaded
Inverted Pendulum) [1–3]. The SLIP model is composed of
a point mass representing the body and a massless spring
leg. The SLIP model is widely recognized as the intrinsic and
qualitative “template”which can describe the general running
locomotion of legged animals with different geometrical
shapes and evolutionary stages as the “anchor” [4].

The research described in the previous paragraph sug-
gests that the legs of bioinspired legged robots should be
operated like a passive and linear spring by using stiffness or
force control. For example, on the arms [5], hands [6], legs [7],
or exoskeleton [8]. Though ideally the spring-like behavior
can be achieved by controlling multi-degree-of-freedom

(DOF) legs to act like a spring, empirically this approach
is extremely challenging because artificial actuators such as
electric motors have limited power density in comparison to
biological actuators such asmuscles.Thus instead of using the
animal-like multi-DOF legs, some legged robots use passive
compliant components as legs [9]. The quadruped Scout
series uses linear springs as the legs [10–12]. The hexapod
RHex series went through various generations of legs [13, 14],
and it uses the half-circular legs made of fiberglass composite
in its latest version [15, 16]. The hexapod Sprawl series uses
polyurethane to generate passive compliance of the legs [17,
18].

The material in a half-circular shape is one of the ideal
components for compliant legs on a robot owing to its simple
morphology. The RHex with the half-semicircular legs has
demonstrated versatile behaviors such as running [19], stair
ascent/descent [20, 21], high-step climbing [22], bounding
[23], leaping [24], and other advanced dynamic maneuvers
[16]. The RHex uses a fiberglass composite as the leg material
because commercial, deformable polymers are unlikely to
meet the necessary requirements such as stiffness, robustness,
and minimum plastic effect. However, making a fiberglass
composite leg with adequate stiffness and in a circular
shape still relies heavily on the engineering trial-and-error
process.
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Here, we propose a methodology to design and fabricate
a compliant half-circular fiberglass composite with desired
stiffness. The composite made in strips is utilized as the
reference test to investigate the empirical elastic properties
because a flat composite sheet is easier to fabricate and each
sheet can produce strips with different fiber orientations for
evaluation. The equivalent elastic modulus is adopted as the
interface to link the microscale mechanics to the macroscale
resilient behaviors because the detailed mechanics of the
fiberglass composite as determined by the mechanics of the
laminates and bonding adhesives and their interactions are
hard to analyze analytically. In order to link the elastic behav-
iors of the flat sheets and the half-circular beams, twomodels
that can be experimentally implemented are introduced to
link the resultant stiffness to the equivalent elastic modulus.
As a result, the mechanical properties derived based on the
deformation test on the flat strip composite can be directly
deployed to the half-circular composite.

The remainder of the paper is organized as follows:
Section 2.1 introduces the elastic models utilized for exper-
imental implementation, while Section 2.2 describes the
experimental methods. Section 3 report the experimen-
tal results of the cantilever and half-circular composites.
Section 4 concludes the work.

2. Materials and Methods

2.1. Elastic Models. In general, the resultant stiffness of a
material is determined by its elastic modulus as well as its
geometric dimensions. From the aspect of robotic engineer-
ing, where the system is usually integrated with existing
materials, the changing of material properties to fit the
robotic requirements is usually a challenge.Thus the required
mechanical characteristics of the robot are usually achieved
by designing and tuning the dimensions of the components
and choosing adequate and available raw materials. For
example, in our application where compliant legs are desired,
the design strategy lies in investigating the fiberweave pattern
and the number of layers of fiberglass sheets required to form
the leg, so the macroscale leg stiffness can be achieved.

A compliant leg in a half-circular shape is desired for
two reasons: first, a robot with half-circular legs has rolling
contact to the ground, which is reported to have excellent
locomotion characteristics. Second, the component in half-
circular shape is easy to fabricate and has compliant behavior.
Since the majority of the reported analyses are on flat
sheets/bars (i.e., beam model), this work starts with the
analysis on the flatmaterials first and then extends to the half-
circular shaped materials.

2.1.1. Cantilever Beam Model. The elastic characteristics
of the cantilever rectangular beam model are shown in
Figure 1(a) and are described as follows. It has one elastic
parameter, the elastic modulus (𝐸), and three geometric
parameters, including length (𝑙), width (𝑤), and thickness
(ℎ). When the force (𝐹) is applied to the beam, the free end
of the beam will deform a distance (𝑦). According to the
solid mechanics of materials, the deformation of the beam
mainly results from the tension and compression of the beam
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Figure 1: The solid mechanic model (a) and the simplified model
(b) of the cantilever beam.

material in microscale. The normal strain in any rectangular
cross section of the beam can be represented as

𝜎 =
𝑀 ⋅ 𝑐

𝐼
, (1)

where 𝑐, 𝑀, and 𝐼 represent the distance from the neutral
surface, the bending moment, and the moment of inertia,
respectively.The last term is determined by the width (𝑤) and
height (ℎ) of the beam, 𝐼 = 𝑤ℎ

3
/12. The bending moment

(𝑀) caused by the external forced loading on an arbitrary
position of the beam can be expressed as

𝑀 = 𝐹 (𝑙 − 𝑥) . (2)

The strain energy of the whole beam (𝑈
𝑏
) due to the moment

can then be computed

𝑈
𝑏
= ∬𝜎𝑑𝜖 𝑑𝑉 = ∫

𝐿

0

𝑀2

2𝐸𝐼
𝑑𝑥 = ∫

𝐿

0

[𝐹 (𝑙 − 𝑥)]
2

2𝐸𝐼
𝑑𝑥

=
𝐹
2𝑙3

6𝐸𝐼
.

(3)

The strain energy from shear force is ignored because it
is relatively small in comparison to that from bending. In
addition, the elastic property of the cantilever beam model
can be approximated by a lumped linear spring with stiffness
(𝑘), as shown in Figure 1(b), whose equilibrium position
resides at the position where the beam is not force loaded.
The spring potential of the lumped model is

𝑈
𝑘
=
1
2
𝑘𝑦

2
. (4)

Because the cantilever beam model and the lumped model
represent the same system, the potential energies of both
systems can be treated the same

𝑈
𝑏
=

𝐹2𝑙3

6𝐸𝐼
=

(𝑘𝑦)
2
𝑙3

6𝐸𝐼
=
1
2
𝑘𝑦

2
= 𝑈
𝑘
. (5)

As a result, the “resultant stiffness” of the beammodel can be
derived as

𝑘 =
3𝐸𝐼
𝑙3

=
𝑤ℎ3𝐸

4𝑙3
. (6)
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Figure 2: The solid mechanic model (a) and the simplified model
(b) of the curved beam.

2.1.2. Curved Beam Model. The cantilever rectangular beam
model can be extended to the model with a half-circular
shape as shown in Figure 2(a), the same shape as the robot
leg. The curved beam also has four parameters: the elastic
modulus (𝐸), the radius of the curvature (𝑅), the beam width
(𝑤), and the beam thickness (ℎ). While an external force is
applied to the beam at the bottom side, the arbitrary cross
section at angle 𝜃 has a normal force (𝐹

𝜃
) and a bending

moment (𝑀
𝜃
):

𝐹
𝜃
= 𝐹 sin 𝜃,

𝑀
𝜃
= 𝐹𝑅 sin 𝜃.

(7)

Thus, the normal stress at this position can be computed:

𝜎
𝜃
=

−𝐹
𝜃

𝐴
+
𝑀
𝜃 (𝑟 − 𝑅)

𝐼

=
−𝐹 sin 𝜃

𝐴
+
𝐹𝑅 sin 𝜃 (𝑟 − 𝑅)

𝐼
,

(8)

where𝐴 represents the cross section area and 𝑟 is the distance
from the circular center to the stress. The strain energy of the
whole half-circular leg (i.e., from 𝜃 = 0

∘ to 𝜃 = 180∘) can be
yielded:

𝑈
𝑐
= ∭

𝜎
𝜃

2𝐸
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⋅ ∫
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𝐼
]

2
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=
𝑤𝐹2𝜋

4𝐸
{
𝑟1

2 − 𝑟2
2

2𝐴2 −
2𝑅
𝐴𝐼
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1
3
(𝑟1

3
− 𝑟2

3
)

−
𝑅

2
(𝑟1

2
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2
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𝑅2

𝐼2
[
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4

4
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3
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𝑅2 (𝑟1

2 − 𝑟2
2)

2
]} ,

(9)

where the symbols 𝑟
1

and 𝑟
2

represent the outer and
inner radii of the curved beam, respectively. As shown in
Figure 2(a), these two radii can be related to the dimensions
of the beam by

𝑟1 − 𝑟2 = ℎ,

𝑟1 + 𝑟2 = 2𝑅.
(10)

By importing (10) into (9), the strain energy of the curved
beam can be derived as

𝑈
𝑐
=

𝑤𝐹2𝜋

4𝐸
{
𝑅ℎ

𝐴2 −
2
𝐴𝐼
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3
(3𝑅2
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4
)−𝑅

3
ℎ]
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𝑅2

𝐼2
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𝑅ℎ

2
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+
ℎ2

2
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2𝑅ℎ
3

(3𝑅2
+
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4
)

+𝑅
3
ℎ} =

𝐹2𝑅𝜋

4𝑤ℎ𝐸
(
12𝑅2

ℎ2
− 1) .

(11)

Similarly, the elastic property of the curved beam model can
be approximated by a lumped linear spring with stiffness (𝑘),
as shown in Figure 2(b), whose equilibrium position resides
at the point where the curved beam is not force loaded. The
spring is vertically posed with a natural length of 2𝑅. Since
the curved beam model and the lumped model represent
the same system, the strain energies of both systems can be
treated the same:

𝑈
𝑐
=

𝐹2𝑅𝜋

4𝑤ℎ𝐸
(
12𝑅2

ℎ2
− 1) =

(𝑘𝑦)
2
𝑅𝜋

4𝑤ℎ𝐸
(
12𝑅2

ℎ2
− 1)

=
1
2
𝑘𝑦

2
= 𝑈
𝑘
.

(12)

As a result, the “resultant stiffness” of the curved beammodel
can be derived as

𝑘 =
2𝑤ℎ𝐸

𝑅𝜋 (12𝑅2/ℎ2 − 1)
. (13)

Because the ratio 𝑅/ℎ of the curved beam in our robot leg
application is greater than an order, the constant term 1 in the
parenthesis can be ignored. Therefore, the resultant stiffness
can be approximated as

𝑘 =
𝑤ℎ

3𝐸

6𝑅3𝜋
. (14)

The approximation also indicates that the strain energy
caused by normal force is much smaller in comparison to
that caused by bending moment, similar to the results of the
cantilever beam model as reported.

2.1.3. Composite Model. Equations (6) and (14) reveal the
relation of the model’s resultant stiffness to its geometric
parameters and elastic modulus. This modulus represents
the explicit behavior of the complex internal stress-strain
behavior. The beam formed by composite materials is one of
the representative examples. As shown in Figure 3, assume



4 Applied Bionics and Biomechanics

MM

E1

E2

E3
...

Eeq

Figure 3: The composite material is stacked in layers of materials
with different elastic moduli, and the composite can be regarded as
a homogeneous material with an “equivalent” elastic modulus.

the beam is formed by layered thin sheets and that the
stacking is symmetric to the neutral surface of the beam.
Owing to the geometrical constraint, the strain (𝜀

𝑖
) within

each layer and between the layers is continuous, but the stress
at the interface of the layers can be varied. Similar to the
behaviors observed in the cantilever beammodel and curved
bean model, the bending moment is the main factor that
determines the resultant stiffness. This is mainly caused by
the moment in the cross section. Thus, the bending moment
of the composite beammodel can be computed as the sum of
all moments caused by the normal stress in all layers:

𝑀 = ∬𝜎𝑦𝑑𝐴 = 2𝑤(∫
𝑑1

0
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𝑑
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(15)

Then, the “equivalent” elastic modulus of this composite
beam can be computed:

𝑀 =
2𝜀
𝑛
𝑊

3ℎ

𝑛

∑
𝑖=1

𝐸
𝑖
(𝑑
𝑖

3
−𝑑
𝑖−1

3
) =

2𝐸eq𝜀𝑛𝑊
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3
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∑
𝑛

𝑖=1 𝐸𝑖 (𝑑𝑖
3
− 𝑑
𝑖−1

3
)

ℎ3
.

(16)

The derivation shown above suggests a methodology to
develop a compliant robot leg from composite materials. In
applications of uniform and isotropic materials where the
material dimensions and elastic modulus are known, (6) and
(14) reveal the effects of these parameters on the overall
compliant behavior, the “resultant” stiffness. In contrast, in
our application of compositematerials where the “equivalent”
elastic modulus is not a given parameter, (6) and (14) can be

Table 1: Specifications of the fiberglass clothes.

(a)

E-glass (0∘)
Layer orientation (∘) 0∘ 45∘ 90∘ −45∘

Layer weight (g/m2) 472 — 45 —
Weight, knitting yarn (g/m2) 10

(b)

E-glass (−45∘, 0∘, 45∘)
Layer orientation (∘) 0∘ 45∘ 90∘ −45∘

Layer weight (g/m2) 295 148 45 148
Weight, knitting yarn (g/m2) 12

reversely utilized to compute the equivalent elastic modulus,
where the detailed mechanics of the stress-strain behavior
are not necessary to the analysis. In this case, both the
dimensions (i.e., (𝑙, 𝑤, ℎ) or (𝑅, 𝑤, ℎ)) and resultant stiffness
(𝑘) of the beam should be known a priori. The former is
usually known when the material is fabricated. The latter can
be obtained by empirical force-displacement measurement,
and the detailed method for this will be reported in the next
section.

2.2. Experimental Methods

2.2.1. Fiberglass Sample Preparation. The fiberglass compos-
ite is formed by layered fiberglass cloths with epoxy in-
between. The elastic modulus of each thin fiberglass layer
is determined not only by the mechanical properties of the
glass fiber itself but also by how the fibers are woven. The
anisotropic properties of the fibers are actually favorable
because different mechanical properties of the composite
can be achieved by the sample without altering its size. To
investigate the isotropic effect, two kinds of fiberglass cloths
were adopted, the E-glass (0∘) and the E-glass (−45∘, 0∘, 45∘),
and Table 1 shows their specifications.

The fiberglass composites were fabricated in two different
shapes for experimental evaluation. The first shape is a strip
some 10 cm long and 2 cm wide. In addition, the fiberglass
cloths were cut in three different directions (0∘, 45∘, 90∘) as
shown in Figure 4(a), to evaluate the anisotropic effect. The
second shape is the half-circular shape shown in Figure 4(b),
the same shape as the legs on the robot.

The step-by-step fabrication procedure for the half-
circular leg is described in the exemplary demonstration.
(i) Preparing a mold as shown in Figure 5(a): the fiberglass
cloths were stacked from the inner to outer surfaces, so a
mold supporting the shape of the inner surface is required.
After determining the dimensions of the leg, an aluminum
hollow cylinder was made as the mold. (ii) Covering a release
film and a peel-ply on the mold is as shown in Figure 5(b).
(iii) Preparing fiberglass cloths as shown in Figure 5(c): cut
the cloths to the right dimensions following the selected
directions. (iv) Preparing the epoxy resin is as shown in
Figure 5(c). (v) Stacking the fiberglass cloths is as shown
in Figure 5(d): brushing the cloths with epoxy and stacking
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Figure 4:The fiberglass composites: (a) the definition of the cutting
directions and the size of the strip samples. (b)The size of the curved
beam sample.

them layer by layer on top of the peel-ply. After each layer was
stacked, using a roller to roll the surface in order to tightly
compress the layered composite and to force resin into the
cloth. The type and orientation of the anisotropic cloth in
each layer can be different, determined by the experimental
setting. (vi) Covering a release film and a perforated film on
the stacked fiberglass layers. (vii) Covering a breather ply,
so the vacuum pump can remove the air bubbles within the
stacked fiberglass layers. (viii) Covering a vacuum bagging
film and sealing it with a sealant tape are as shown in
Figure 5(e). (xi) Curing the composite in the oven with the
vacuum pump on is as shown in Figures 5(f) and 5(g). The
temperature and time for curing are determined by the epoxy
properties. (x) After curing, the raw composite was fabricated
and ready for cutting into the shape of the legs as shown in
Figure 5(h).

Figure 6 shows various photos taken during the fabri-
cation process. (a) The release film and the peel-ply were
covered on the mold. (b) The cloths were brushed with the
epoxy. (c) The release film, perforated film, and breather ply
were covered on the stacked fiberglass layer. (d) The edges
of all layers were trimmed. (e) The vacuum bagged film was
covered and sealed thematerial assembly by using the sealant
tape. (f) A photo of the whole assembly which contains the
fiberglass layers and other associated films. (g) The assembly
was cured in the oven. (h)A photo of thewhole assembly after
curing.

2.2.2. Sample Stiffness Measurement. Customized testing
setups were built to take the force-displacement measure-
ments of the cantilever beam and curved beam, where
the force and displacement were directly matched with the
operational directions of the virtual springs as shown in
Figures 1(b) and 2(b). Though the conventional tensile test
can also derive the elastic modulus of the material, the setup
is hard to modify for our force-displacement measurements.
In addition, the layered composite material has different
behaviors in tension and compression, so the customization
is required for experimental validation.

The sample was clamped to the testing setup as shown
in Figure 7. The setup was mounted under a drill press, and

(a) (b)

Epoxy

(c) (d)

(e)

Oven

(f)

Oven

Pump

ON

ON

(g) (h)

Figure 5: The fabrication process for the fiberglass composites.

the one-dimensional compression motion was generated by
the linear guide way of the drill press. By using the locking
mechanism of the drill press, the sample was set to be
compressed with several displacements. In themeantime, the
force was measured using a commercial bidirectional force
transducer.

The experiment procedure has three steps. (i) Calibration:
for the rectangular beam, use the jig structure to hold the
cantilever beam horizontally as shown in Figure 7(a). Then
vertically align the drill press and force sensor to the free
end of the sample, so the force can be applied to the sample
with displacement in the correct direction. For the curved
beam, mount the cylindrical tube inside the curved beam, as
shown in Figure 7(b), and place the assembly in between the
force sensor at the bottom and the drill press at the top. Make
sure the force can be applied to the sample with displacement
in the correct direction. After the alignment, remove the
cylindrical tube circular, so the curved beam can be subject
to compression. (ii) Measurement: the force data is collected
when the displacements of the rectangular beam are 5mm,
7mm, and 10mm, and when those of the curved beam are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Photos of the fabrication process for the fiberglass composites.

3mm, 5mm, 7mm, 10mm, and 12mm.The experiments are
repeated several times using different samples with the same
parameters, so the variation of the mechanical characteristics
of the samples has less effect on the final results. (iii) Analysis:
use the linear regressionmethod to find the slopes of the force
versus displacement data, which represents the “resultant”
stiffness of the rectangular beam or the curved beam. Then,
by using (6) and (14), the “equivalent” elastic modulus of the
beam can be derived.

3. Results and Discussion

3.1. Experiment Results of the Strip Fiberglass Composites in
the Cantilever Beam Test. The equivalent elastic modulus of

the fiberglass composite is determined by several factors such
as the elastic modulus and weave of the fiberglass cloths,
the elastic modulus of the epoxy, and the stacking methods.
To simplify the development, the microscale mechanics are
ignored but the macroscale mechanics of the composite are
captured. More specifically, the equivalent elastic modulus
serves as the key factor for evaluating the performance of the
layered composite.

3.1.1. Experiments on 4-Layer Composites Made by One Kind
of Fiberglass Cloth. The fiberglass composite strips were fab-
ricated by a single kind of fiberglass cloth and in four layers.
Together with three different cutting directions (0∘, 45∘, 90∘),
there are six kinds of samples in total. Table 2 lists forces of
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Force gauge

Drill press

(a)

Force gauge

Drill press

Cylindrical tube
(remove after calibration)

(b)

Figure 7: Measurement setup of the cantilever beam experiments (a) and the curved beam experiments (b).

Table 2: Forces versus displacements of the fiberglass composite strips made by the E-glass (0∘) and E-glass (−45∘, 0∘, 45∘) with three different
cutting directions (0∘, 45∘, 90∘).

Disp.
(mm)

Test #1
(N)

Test #2
(N)

Test #3
(N)

Test #4
(N)

Test #5
(N)

Test #6
(N)

Test #7
(N)

Average
(N)

Std
(N)

E-glass (−45∘, 0∘, 45∘)-0∘
5 6.39 6.47 5.67 6.42 6.37 6.43 6.20 6.28 0.28
7 9.04 8.92 7.90 8.86 8.80 9.10 8.65 8.75 0.41
10 12.82 12.88 11.32 12.78 12.68 12.91 12.39 12.54 0.56

E-glass (−45∘, 0∘, 45∘)-45∘
5 4.23 4.61 3.67 3.84 3.92 4.10 4.07 4.06 0.30
7 6.01 6.39 5.19 5.42 5.63 5.73 5.78 5.74 0.39
10 8.51 9.20 7.37 7.70 7.89 8.20 8.18 8.15 0.59

E-glass (−45∘, 0∘, 45∘)-90∘
5 3.07 3.20 2.38 2.69 2.57 2.71 2.74 2.76 0.28
7 4.40 4.38 3.59 3.78 3.65 3.75 3.91 3.92 0.34
10 6.18 6.36 4.88 5.38 5.16 5.40 5.51 5.55 0.54

E-glass (0∘)-0∘
5 4.43 4.64 3.51 4.09 5.44 5.76 5.05 4.70 0.78
7 6.25 6.47 4.89 5.78 7.80 8.12 7.13 6.64 1.14
10 8.88 9.27 7.02 8.21 10.96 11.55 10.13 9.43 1.58

E-glass (0∘)-45∘
5 1.56 1.59 1.12 4.09 1.37 1.37 1.32 1.77 1.03
7 2.23 2.26 1.60 5.78 1.95 1.99 1.91 2.53 1.45
10 3.14 3.19 2.26 8.21 2.75 2.78 2.66 3.57 2.07

E-glass (0∘)-90∘
5 1.25 1.21 1.02 1.29 1.08 1.08 1.21 1.16 0.10
7 1.74 1.72 1.47 1.85 1.67 1.50 1.67 1.66 0.13
10 2.50 2.44 2.07 2.60 2.23 2.15 2.41 2.34 0.20

the strips in three displacements. Figure 8 shows the force-
displacement plot of these samples. The data is represented
in a statistical manner with means and standard deviations
(STD), which are obtained from seven experimental runs.
Several comments can be addressed:

(i) The means of each kind of composite are aligned
to nearly a straight line which passes zero, indicat-
ing that it is reasonable to approximate the force-
displacement of the cantilever beam by a virtual
spring system as shown in Figure 1.

(ii) The stiffness of the virtual springs (i.e., slope of the
force-displacement plot) shown in Figure 8 can be
extracted and replotted as the vertical axis as shown in
Figure 9(a). The figure clearly shows that the stiffness
of the E-glass (−45∘, 0∘, 45∘) is larger than that of the
E-glass (0∘), no matter what the cutting direction is.
It may be intuitive that the stiffness of the E-glass (0∘)
with the cutting direction in 0∘ (i.e., hereafter referred
to as E-glass (0∘)-0∘) should be larger than that of
the E-glass (−45∘, 0∘, 45∘) in any cutting direction
because the fibers of the former are more aligned
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Figure 8: The force-displacement relation of the fiberglass composite strips made by the E-glass (−45∘, 0∘, 45∘) in (a) and the E-glass (0∘) in
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Figure 9:The resultant stiffness (a) and equivalent elastic moduli (b) of the fiberglass composite strips made by the E-glass (−45∘, 0∘, 45∘) and
the E-glass (0∘) with three different cutting directions.

to resist the bending. However, because the E-glass
(−45∘, 0∘, 45∘) has 20% more knitted yarn per square
meter than the E-glass (0∘), the composite of the
former is thicker than that of the latter, though both
have the same four layers. According to (6), the
resultant stiffness is affected not only by the elastic
modulus but also by the geometric properties of the
composite. In this set of experiments, the thickness of
the composite appears to have a larger effect than the
fiber direction, resulting in the phenomenon shown
in Figure 8.

(iii) The equivalent elastic moduli of the composites
can be computed by (6) with given dimensions. As
shown in Figure 9(b), after eliminating the geometric
effects, the elastic modulus of the E-glass (0∘)-0∘
has the highest value, as expected. Furthermore,
the elastic moduli of the E-glass (0∘)-45∘ and E-
glass (0∘)-90∘ have very low values, and this phe-
nomenon is also expected because few fibers are
aligned in these directions. In contrast, the elastic
modulus of the E-glass (−45∘, 0∘, 45∘) has a gentle
change.
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In short, this set of experiments confirms that (i) the
mechanic behavior of the empirical composite samples
matches that of the model and (ii) the idea of using the
virtual spring to model the elastic behavior is feasible in this
composite case. In addition, the elastic moduli of these two
kinds of cloths, each with three cutting directions, are yielded
and will serve as the reference for the following development
where the composite is composed of both fiberglass clothes.

3.1.2. Experiments on 4-Layer Composites Made by Two Kinds
of Fiberglass Cloths. In this set of experiments, two kinds
of fiberglass cloths are mixed to form a 4-layer composite.
Four different stacking combinations of the composite were
used, and all were symmetric to the center plane. The (S)
stacking configuration used the E-glass (0∘) and the E-glass
(−45∘, 0∘, 45∘) with the same orientation as the inner layer
and outer layer, respectively. The (D) stacking configuration
used the E-glass (0∘) as the inner layer and the E-glass
(−45∘, 0∘, 45∘) as the outer layer, but the latter rotated 90∘.The
(S󸀠) and (D󸀠) stacking configurations had reversed inner and
outer fiberglass clothes without altering the cutting directions
accordingly. These four configurations were adopted in an
attempt to evaluate two effects: first, the positions of the layers
in thewhole composites (i.e., S versus S󸀠 andDversusD󸀠) and,
second, the effect of the cutting direction on the stiffness.

Figure 10 plots the equivalent elastic moduli of these four
configurations in statistical representations (i.e., mean and
STD). In addition, the equivalent elastic modulus of the E-
glass (0∘) and the E-glass (−45∘, 0∘, 45∘)with the same cutting
directions are also plotted for comparison. The figure reveals
that, as expected, the elastic moduli of the mixed four-layer
composites are mostly located between those of the four-
layer composite made either by the E-glass (0∘) or the E-glass
(−45
∘
, 0
∘
, 45
∘
)with the same cutting directions.Moreover, the

elastic moduli of the four-layer composites are closer to that
of the outer layer than the inner layer because the bending-
induced deformation is mainly determined by the moment
generated by the outer layer.

The equivalent elastic modulus of the mixed composite
can also be estimated by (16), where the dimensions of the
composite were empirically measured and the elastic moduli
of the individual layers were derived by the experiment
described in Section 3.1.1. Table 3 shows the elastic moduli of
four configurations by prediction and three test experiments.
The table reveals that, except for one test result, the percentage
errors between the estimated and experiment results of 36
tests were within 10%, and 23 out of 36 tests had errors less
than 5%. The averaged error of eleven out of twelve types
of composites is less than 4%. The matched result confirms
that the composites made by different fiberglass clothes with
different cutting directions can be empirically made, and
its equivalent elastic modulus can also be predicted with
reasonable accuracy.

3.1.3. Experiments on 6-Layer Composites Made by Two Kinds
of Fiberglass Cloths. The estimation of the elastic modulus
of the composite stacked by the E-glass (0∘) and the E-
glass (−45∘, 0∘, 45∘) is functional not only for the 4-layer
composite but also for other numbers of layers. A 6-layer

Table 3:The estimated andmeasured elastic modulus of the 4-layer
strip composites.

(a)

Type S-0 S-45 S-90 D-0 D-45 D-90
Estimated 𝐸 (GPa) 19.90 13.03 9.17 11.01 13.03 18.06
Test #1 17.01 14.04 8.90 10.26 12.93 16.50
Error (%) 14.53 7.74 2.94 6.83 0.78 8.63
Test #2 18.67 12.72 8.99 10.99 12.65 18.37
Error (%) 6.19 2.39 1.92 0.15 2.93 1.72
Test #3 19.87 13.16 9.35 11.40 13.97 19.40
Error (%) 0.17 0.99 1.94 3.59 7.15 7.41
Mean 18.52 13.31 9.08 10.88 13.18 18.09
STD (1.44) 0.67 0.24 0.58 0.70 1.47
Average error (%) 6.95 2.12 0.98 1.15 1.18 0.17

(b)

Type S󸀠-0 S󸀠-45 S󸀠-90 D󸀠-0 D󸀠-45 D󸀠-90
Estimated 𝐸 (GPa) 25.5 8.78 7.18 23.88 8.78 8.8
Test #1 25.8 8.5 7.32 21.63 8.05 8.66
Error (%) 1.16 3.28 1.90 9.43 8.40 1.56
Test #2 27.16 8.70 6.81 25.53 8.39 9.06
Error (%) 6.5 0.92 5.15 6.91 4.52 3.02
Test #3 25.62 8.87 6.98 25.32 8.92 8.94
Error (%) 0.49 0.93 2.81 6.04 1.58 1.62
Mean 26.19 8.69 7.04 24.16 8.45 8.89
STD 0.84 0.19 0.26 2.19 0.44 0.21
Average error (%) 2.72 1.03 2.00 1.17 3.72 0.98

Table 4:The estimated andmeasured elastic modulus of the 6-layer
composites.

Type D222-0 D222-45 D222-90
Estimated 𝐸 (GPa) 9.45 13.42 18.80
Test #1 10.34 12.85 19.06
Error (%) 9.38 4.26 1.37
Test #2 9.55 13.68 20.19
Error (%) 1.03 1.92 7.37
Test #3 10.20 13.92 18.76
Error (%) 7.92 3.77 0.21
Mean 10.03 13.48 19.34
STD 0.42 0.56 0.75
Average error (%) 6.14 0.47 2.85

(D222) stacking configuration used the E-glass (0∘)-0∘ as
the inner two layers and the E-glass (−45∘, 0∘, 45∘)-90∘ as
the outer four layers was made to confirm this conclusion.
Figure 11 shows the equivalent elastic modulus of this mixed
composite as well as that of the composites made by each
kind of fiberglass cloth. As expected, because the outer
layer dominates the elastic behavior, the equivalent elastic
modulus of the mixed composite is close to that of the E-
glass (−45∘, 0∘, 45∘). In addition, because four out of six layers
were E-glass (−45∘, 0∘, 45∘), the equivalent elastic modulus
is closer to that of the E-glass (−45∘, 0∘, 45∘) than the com-
posite of the 4-layer D stacking configuration. Table 4 shows
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Figure 10: The equivalent elastic moduli of the 4-layer fiberglass composite strips made by the mixed E-glass (−45∘, 0∘, 45∘) and the E-glass
(0∘) in four different layer configurations (S, S󸀠, D, D󸀠).

the elasticmodulus of themixed composite by prediction and
three test experiments. The table reveals that the percentage
errors between the estimated and experiment results of 9 tests
were within 10%, and 6 out of 9 tests had errors less than 5%.

The matched predicted and experimental results suggest
that the methodology can be adopted as a useful design
tool: if the equivalent elastic modulus of the individual
layer is known a priori, the desired elastic modulus of
the composite can be correctly designed in simulation first
without relying on an experimental trial-and-error method.

This methodology will be extended to design compliant half-
circular legs in the next section.

3.2. Experiment Results of the Curved Beam Model. The
ultimate goal of this work is to develop a methodology
for fabricating a fiberglass composite that has the desired
resultant stiffness, so the composite can be implemented on
a robot for developing dynamic behaviors. In order to link
the development of the half-circular composite to the strip
composite described in the previous section, the half-circular
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Figure 11: The equivalent elastic moduli of the 6-layer fiberglass
composite strips made by the mixed E-glass (−45∘, 0∘, 45∘) and the
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composite for experimental validation used the same two
kinds of the fiberglass cloths as well as the same layer
configuration. Unlike the composite strips where the samples
in all three cutting directions can be obtained by cutting a
single large composite plate, the layers of the half-circular
composite can only have one specific configuration at a
time. As a result, instead of making composites in all twelve
combinations of (S, S󸀠, D, D󸀠), only the four of them closest
to our interest were selected for evaluation, including S-0∘, S-
90∘, D-0∘, and D-90∘. In addition, the composites made by
one kind of fiberglass cloth were made for comparison as
well, including E-glass (0∘)-0∘, E-glass (−45∘, 0∘, 45∘)-0∘, and
E-glass (−45∘, 0∘, 45∘)-90∘.

Figure 12 shows the force-displacement of the compos-
ite strips and the half-circular composites. Similar to the
behavior observed in the composite strip, the means of the
measured experimental data of the half-circular composite
are aligned nearly to a straight line. Thus it is reasonable
to approximate the force-displacement of the half-circular
composite by a virtual spring system as shown in Figure 2.
By using the stiffness (i.e., slope of this figure) and measured
dimensions, the equivalent elastic modulus of the half-
circular composite can be computed using (14). Table 5 lists
the elastic moduli of these configurations by experimental
measurement and estimation, where the latter was obtained
by the results of composite strips. The close match between
these two data sets in most of the composite configurations
confirms that the fabricated strip and half-circular compos-
ites with the same layer configuration have similar values
of elastic modulus, and this further confirms two points:
first, the fabrication process and product quality are reliable,
and, second, the test results and model development of
the composite strips can provide useful design information
before making half-circular composites.

Table 5: The estimated and measured elastic modulus of the
semicircular composites.

Estimated 𝐸 Measured 𝐸 Error (%)
E-glass (−45/0/45)-0 19.21 19.18 0.15
E-glass (−45/0/45)-90 9.42 9.22 2.05
E-glass (0)-0 26.75 26.84 0.37
S-0 19.90 20.42 2.60
S-90 9.17 9.98 8.79
D-0 11.01 10.89 1.08
D-90 18.06 20.71 14.64

Table 6: Specifications of the half-circular composite leg made by
the E-glass (0∘, 90∘)-0∘.

Thickness
(mm)

Width
(mm)

Stiffness
(k/m)

𝐸

(Gpa)
#1 3.60 20.69 2563.10 19.98
#2 3.60 20.86 2618.98 20.16
#3 3.61 20.41 2509.90 19.68
#4 3.60 20.90 2670.84 20.58
#5 3.62 20.77 2594.05 19.80

Averaged stiffness (k/m) 2591.37 ± 60.25

The RHex-style robot in our lab has a mass of 6.5 kg and
the dimensions 0.45m in length, 0.28m in width, and 0.2m
in height (standing height).The current robot legs have radius
70mm and width 20mm. In order to evaluate the effect of
leg compliance on the robot’s behavior, the new composite
legs should have the same dimensions as the old legs. Thus,
according to (14), the possible parameters for variation are the
thickness and equivalent elastic modulus of the composite.
Thus the resultant stiffness can be varied by changing either
cloth type or the number of layers.

The desired stiffness of the robot can be estimated by the
dynamics of the spring-mass model as reported in [25]. The
literature reported that animals with different masses have
different stride frequencies [26]. A system weighing around
6.5 kg should have a stride frequency within the range of
2–4Hz. Note that because the robot utilizes an alternating
tripod gait, the leg stride frequency should be half of the
model stride frequency, about 1-2Hz. In addition, because
tripod locomotion involves three legs contacting the ground
simultaneously, the stiffness of each leg should be one-third
of the model stiffness. As a result, the individual leg stiffness
is set to about 2000–2500N/m.

In the first attempt, the fiberglass legs were made by the
E-glass (0∘, 90∘)-0∘. As shown in Table 6, the legs have an
averaged resultant stiffness of 2591Nm, 3.6% error to the
desired 2500N/m. However, when the legs were installed on
the robot for the running test, the low lateral stiffness resulted
in lateral motion disturbance, so the robot could hardly
perform straight forward locomotion. Thus, in addition to
planning the compliance in the sagittal plane of the robot, the
lateral stiffness should be considered. This is the reason why
we need to stack the different fibers together.
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Figure 12: The force-displacement relation of the fiberglass composite strips (a) and semicircular composites (b) made by the E-glass
(−45∘, 0∘, 45∘) and the E-glass (0∘) in seven different material and layer configurations.
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Figure 13: The robot installed with the fiberglass composite legs performs walking (a) and leaping (b) behaviors.

In the second attempt, the fiberglass legs were made by
three layers of E-glass (−45∘, 0∘, 45∘)-90∘ on each outer side
and four layers of E-glass (0∘)-0∘ on the inner side, effectively
the “D configuration” but with more layers. The design
process followed that described in the previous two sections.
As shown in Table 7, the legs have the averaged resultant
stiffness of 2555Nm, 2% error to the desired 2500Nm. In
addition, because of the 90∘ rotated configuration of the E-
glass (−45∘, 0∘, 45∘), the lateral stiffness as well as the torsional
stiffness with respect to the vertical axis are stiffer to resist
the perturbation generation during locomotion test. The
robot with this set of legs can perform walking and leaping
locomotion, with the snapshots extracted from the recorded
video being shown in Figure 13 as a demonstration.

4. Conclusion

We report on the methodology for developing compliant,
half-circular, and composite robot legs with designable

Table 7: Specifications of the half-circular composite leg made by
the E-glass (−45∘, 0∘, 45∘)-90∘ and the E-glass (0∘)-0∘.

Thickness
(mm)

Width
(mm)

Stiffness
(k/m)

𝐸

(Gpa)
Estimated
𝐸 (GPa)

#1 4.37 20.65 2708.81 11.83

10.19
#2 4.34 20.57 2664.14 11.64
#3 4.15 19.95 2245.24 10.48
#4 4.28 20.31 2455.86 11.23
#5 4.35 20.83 2702.62 11.05
Averaged stiffness (k/m) 2555.33 ± 201.95

stiffness. The composite made in strips is utilized as the
reference test to investigate the empirical elastic properties
because the flat composite sheet is easier to fabricate and each
sheet can produce strips with different fiber orientations for
evaluation. By executing the force-displacement experiments
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on the flat cantilever composite composed of the same
kind of fiberglass cloth, together with the mapping model
from the cantilever mechanics to the reduced-order virtual
spring, the equivalent elastic modulus of the composite can
be revealed. In this work, two kinds of fiberglass cloths,
each with three cutting directions, were tested, so there are
six reference elastic moduli to serve as the “database” for
designing composites with mixed fiberglass cloths. The 4-
layer composites with twelve configurations were experi-
mentally evaluated, where the equivalent elastic moduli of
the estimated and experimental values were utilized as the
comparison basis. The results reveal that, among 36 tests, 35
of them have percentage errors less than 10%, and 23 of them
have percentage errors less than 5%. The 6-layer composites
with three configurations were evaluated as well. The results
reveal that, among 9 tests, all have percentage errors less than
10%, and 6 out of 9 tests have percentage errors less than 5%.
Qualitative observation reveals that the fiber directions of the
layered cloth have a critical effect on the equivalent elastic
modulus. As expected, the cloths at the outer layers had the
larger effect on the equivalent elastic modulus.

After confirming that the elastic behavior of the flat
composites made by mixed fiberglass layers can be correctly
estimated, the strategy is extended to the composite in half-
a-semicircular shape. The mapping model from the curved
beam mechanics to the reduced-order virtual spring was
developed to map the equivalent elastic modulus back to
the resultant stiffness of the half-circular composite. The
experimental results confirm that the designed 8-layer half-
circular composites have an averaged resultant stiffness of
2555Nm, which has only a 2% error to the desired stiffness
value 2500Nm.The fabricated compositeswere utilized as the
robot legs, and the robot can reliably perform walking and
leaping behaviors.

We are currently in the process of revising the methodol-
ogy to include the effect of damping into the design process.
This would require model formation in a dynamic manner,
and the experimental setup should be capable of capturing
the dynamics of the composites as well.
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