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Abstract- We report on a model-based approach for robot design 

and its dynamic motion generation. A new torque-actuated 

dissipative spring loaded inverted pendulum model with rolling 

contact (TDR-SLIP) is proposed to serve as the motion template 

for the robot. It is a successor to a previously developed spring 

loaded inverted pendulum model with rolling contact (R-SLIP) 

model but with embedded energy flow, which has better 

mapping to empirical robots. The stability properties of the 

TDR-SLIP model are analyzed, and its stable motion trajectory 

is implemented on the robot as the control guidance. The robot 

leg is developed according to the morphology and function of the 

TDR-SLIP leg, which acts as the design guidance. The proposed 

model-based approach is experimentally evaluated and finds 

that the robot is able to exhibit running behavior with various 

speeds and leg mechanics settings. 

I. INTRODUCTION 

egged animals have great ability in negotiating rough 

terrain. It has long been asked how animals evolved leg 

morphology and how these legs are coordinated for agile 

locomotion, but answers are still limited. On the modeling 

side, one approach to addressing this issue is to search for 

adequate motion models to represent animals’ locomotion. 

More specifically, reduced-order models are generally 

adopted not only because they are simpler and easier to deal 

with, but also because the simpler model can preserve the 

essential characteristics of legged locomotion while ignoring 

the complexity of some other minor effects. Thus, the 

applicable domain of the model can be extended to its largest 

range. On the robotics side, various robots are built based on 

certain biological inspirations or design philosophies, and 

their dynamic performances are usually compared and 

evaluated according to those of the reduced-order models. 

In the past few decades, various models and legged robots 

have been reported and analyzed. Among all the reduced-

order models, the Spring Loaded Inverse Pendulum (SLIP) is 

the most well-known [1, 2]. Simply composed of a point mass 

and a massless linear spring, the SLIP model successfully 

captures the characteristics of the center-of-mass (CoM) 

motion of multi-legged animals, thus serving as the 

fundamental “template” for legged locomotion [3]. Later, 

several other models based on the SLIP were reported, each 

addressing some real-world issues in order to develop the 
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models to better fit reality. Some examples of these models 

include one with two-segment legs [4], one with a rolling foot 

[5], one with clocked torque [6] or constant torque [7] and 

damping terms, etc. On the robotics side, the Sprawl series [8], 

RHex series [9], Scout series [10], and Tekken series [11] are 

a few examples of robots that are able to perform dynamic 

behaviors. Some of them are loosely based on the SLIP model, 

and some of the built robots are specifically tuned to exhibit 

the SLIP model. However, none of the robots are specifically 

and tightly designed based on the reduced-order model. To 

the best of our knowledge, the only robot which approaches 

this protocol is the dynamic climbing robot [12]. 

Previously, we successfully used the Rolling-SLIP (R-

SLIP) model as the “template” to exhibit dynamic running 

behavior in the RHex-style robot – the “anchor” [13]. The 

morphology and mechanism of the model was inspired by the 

solid mechanics of the compliant half-circular legs of the 

robot, thus better capturing its nature dynamics. By matching 

the operation point of the robot to that of the stable fixed-point 

motion of the R-SLIP model, the robot could easily perform 

dynamic running at various speeds without any tuning or 

optimization effort. However, the energy conservative 

characteristics of the R-SLIP model also prevented the 

“template-anchor” mapping from the model onto the 

empirical robot at the deeper level. More specifically, the 

usual control input of the robot – the motor torque – had no 

obvious link to the behavior of the robot. 
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Fig. 1.  Six parameters and three initial conditions of the TDR-SLIP 

model. 
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Here, aiming to investigate the design and control 

relationship between the reduced-order model (i.e. the 

“template”) and the empirical robot (i.e. the “anchor”), we 

report on (i) the development of a new reduced-order model, 

the torque-actuated dissipative SLIP model with rolling 

contact (TDR-SLIP) as shown in Fig. 1. It is the successor of 

the R-SLIP model which had torque and damping terms. (ii) 

The new robot (mainly leg) design based on this new model. 

As a result, there is a clear “template-anchor” relationship and 

the dynamic behavior of the robot can ideally be excited by 

using the model. 

The rest of the article is divided into four sections. Section 

II introduces the TDR-SLIP model. Section III shows the 

model-based robot design, with emphasis on the leg design. 

Section IV describes the experiment results, and Section V 

concludes the work.  

II. CHARACTERISTICS OF THE TDR-SLIP MODEL 

The TDR-SLIP model is composed of a point mass, two 

massless segments connected by a revolute joint, a rotary and 

parallel-installed spring-damper system mounted on the joint, 

and torque acting on the upper segment with an axis passing 

the mass as shown in Fig. 1(a). The lower segment has a 

circular shape which rolls on the ground without sliding. The 

mass is mounted on the opposite end of the upper segment. 

The model has elastic and energy-dissipative properties, and 

will serve as the template for the legged robot with half-

circular legs. The TDR-SLIP has six intrinsic parameters: 

mass (𝑚), length of the upper segment (𝑙), radius of the lower 

segment (r), torsional spring constant (𝑘𝑡 ), and rotational 

damping constant (𝑐𝑡). It also has one external input, torque 

( 𝜏 ). Similar to the behavior of other SLIP-like dynamic 

models, that of the TDR-SLIP is composed of stance phase 

and flight phase, alternating periodically if the model runs 

stably. The transitions from the former to the latter and vice 

versa are defined as liftoff and touchdown, respectively.  

The dynamic behavior of the TDR-SLIP model in stance 

phase can be derived by using the Lagrangian method. Two 

angles 𝜃 and 𝜑 are chosen as the general coordinates for 

the model derivation as shown in Fig. 2. The symbol 𝜃 refers 

to the angle formed by the horizontal line and the upper 

segment, and the symbol 𝜑 refers to the angle between the 

upper segment and the line segment connecting the revolute 

joint to the center of the lower segment. By this definition, the 

angle 𝜃 represents how the leg swings and is an active 

degree-of-freedom (DOF) as the torque involved, while the 

angle 𝜑  represents the compression level of the spring-

damping system. While the model is in its stance phase, 

displacement of the mass in Cartesian coordinates, (𝑥𝑠, 𝑦𝑠), 

can be represented as 

𝑥𝑠 = 𝑟(𝜑 − 𝜑0 − 𝜃 + 𝜃0) − 𝑟 𝑐𝑜𝑠(𝜑 − 𝜃) + 𝑙 𝑐𝑜𝑠(𝜃) 

𝑦𝑠 = 𝑟 + 𝑟 𝑠𝑖𝑛(𝜑 − 𝜃) + 𝑙𝑠𝑖𝑛 (𝜃)                   (1) 

where the subscript 𝑠 indicates stance phase. Velocity of the 

mass can be yielded by derivation of (1) 

𝑥̇𝑠 = 𝑟(1 + 𝑠𝑖𝑛 (𝜑 − 𝜃))(𝜑̇ − 𝜃̇) − 𝑙𝑠𝑖𝑛(𝜃)𝜃̇ 

𝑦̇𝑠 = 𝑟𝑐𝑜𝑠(𝜑 − 𝜃)(𝜑̇ − 𝜃̇) + 𝑙𝑐𝑜𝑠(𝜃)𝜃̇ .            (2) 

Then kinematic energy T and potential energy V of the 

model can be written as 

𝑇 = 𝑚{𝑟2[1 + 𝑠𝑖𝑛(𝜑 − 𝜃)](𝜑̇ − 𝜃̇)
2

+ 𝑟𝑙(𝑐𝑜𝑠(𝜑) −

𝑠𝑖𝑛(𝜃) )(𝜑̇𝜃̇ − 𝜃̇2) +
1

2
𝑙2𝜃̇2}  (3) 

and  

𝑉 =
1

2
𝑘𝑡(𝜑0 − 𝜑)2 + 𝑚𝑔(𝑟 + 𝑟𝑠𝑖𝑛(𝜑 − 𝜃) + 𝑙𝑠𝑖𝑛(𝜃)), (4) 

respectively. Because the TDR-SLIP model incorporates a 

damper which means it is not energy-conservative, the 

Rayleigh dissipation function is included in the Lagrange 

equation 

𝐹 =
1

2
𝑐𝑡𝜑̇2. (5) 

To remedy the energy loss of the model during motion, 

external torque is applied to the upper segment with the axis 

passing the mass (i.e. the same position as the generalized 

coordinate 𝜃 is defined) 

𝑄(𝜃) = 𝜏 
𝑄(𝜑) = 0 . (6) 

With the energy input from the torque, the model can 

maintain roughly the same level of energy to enable stable and 

periodic locomotion. Following that, the dynamic equations 

with respect to two generalized coordinates can be written as 

{

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃̇𝑖
) −

𝜕𝐿

𝜕𝜃𝑖
+

𝜕𝐹

𝜕𝜃̇𝑖
= 𝜏

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑̇𝑖
) −

𝜕𝐿

𝜕𝜑𝑖
+

𝜕𝐹

𝜕𝜑̇𝑖
= 0

 . (7) 

By importing (3)-(6) into (7), the quantitative 

representations of the equations of motion can be expressed 

as  

𝑚𝑙2 − 2𝑚𝑟𝑙(𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜃) + 2𝑚𝑟2(1 + 𝑠𝑖𝑛(𝜑 − 𝜃))𝜃̈ 

+𝑚𝑟𝑙(𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜃) − 2𝑚𝑟2(1 + 𝑠𝑖𝑛(𝜑 − 𝜃))𝜑̈ 

−𝑚𝑟2(𝜑̇ − 𝜃̇)
2

𝑐𝑜𝑠(𝜑 − 𝜃) − 𝑚𝑟𝑙(𝜑2̇ − 2𝜑̇𝜃̇)𝑠𝑖𝑛𝜑 

+𝑚𝑟𝑙𝜃̇2𝑐𝑜𝑠𝜃 + 𝑚𝑔(𝑙𝑐𝑜𝑠𝜃 − 𝑟𝑐𝑜𝑠(𝜑 − 𝜃)) = 𝜏 

 

𝑚𝑟𝑙(𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜃) − 2𝑚𝑟2(1 + 𝑠𝑖𝑛(𝜑 − 𝜃))𝜃̈ 

+2𝑚𝑟2(1 + 𝑠𝑖𝑛(𝜑 − 𝜃))𝜑̈ + 𝑚𝑟2(𝜑̇ − 𝜃̇)
2

𝑐𝑜𝑠(𝜑 − 𝜃) 

−𝑚𝑟𝑙𝜃̇2(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜑) + 𝑚𝑔𝑟𝑐𝑜𝑠(𝜑 − 𝜃) + 𝑘𝑡(𝜑−𝜑0) 

+𝑐𝑡𝜑̇ = 0  

(8) 

Together with the initial conditions (ICs), the dynamic 

behavior of the TDR-SLIP model in its stance phase can be 

numerically simulated. The ICs of the model are usually given 

at the moment of touchdown (i.e. beginning of the stance 

phase), which includes the landing angle (𝛽),  touchdown 

speed (v), and touchdown angle formed by the touchdown 
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r

l

(xs,ys)

θ0

φ0 φ
θ

r(φ-θ-φ0+θ0)

x

y

 
Fig. 2.  Two generalized coordinates for the model development. 
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velocity and the horizontal line (𝛼) as shown in Fig. 1(a). 

On the other hand, the dynamic behavior of the model in its 

flight phase is merely a ballistic flight affected by gravity only, 

so the equations of motion can be expressed as 

𝑥𝑓 = 𝑥𝐿𝑂 + 𝑥̇𝐿𝑂𝑡 

𝑦𝑓 = 𝑦𝐿𝑂 + 𝑦̇𝐿𝑂𝑡 −
1

2
𝑔𝑡2 , (9) 

where the symbols 𝑔 , 𝑓 , and 𝐿𝑂  indicate the gravity 

constant, flight phase, and liftoff moment, respectively. 

Transition of the model from flight phase to stance phase 

(i.e. touchdown) or vice versa (i.e. liftoff) takes place under 

certain conditions. Touchdown of the model occurs when 

mass height decreases during its ballistic flight and reaches 

the geometric relationship 

𝑦𝑇𝐷 = 𝑟 + 𝑟𝑠𝑖𝑛(𝛽) , (10) 

where the symbol 𝑇𝐷 indicates the touchdown moment. On 

the other hand, liftoff of the model occurs when the vertical 

ground-reaction force is equal to gravity. In addition, the 

following two conditions are necessary to ensure continuous 

running of the model. First, at liftoff, the horizontal velocity 

of the mass should be positive for continuing forward motion 

𝑥̇𝐿𝑂 > 0 . (11) 

Second, the mass height of the model at liftoff needs to be 

high enough for successful touchdown for the next stance 

phase 

𝑦𝐿𝑂 +
𝑦̇𝐿𝑂

2

2𝑔
> 𝑟 + 𝑟𝑠𝑖𝑛(𝛽) . (12) 

Note that in reality, when the leg with mass touches down on 

the ground, the leg suffers an impact force which dramatically 

changes its momentum almost immediately. During this 

process, some energy dissipates in the form of heat, sound, 

and deformation. In our setting, as with other developments 

of the reduced-order models, the leg is massless and therefore 

the energy-consuming impact is absent from the model. The 

point mass above the spring does not suffer impact either; this 

is because the spring acts as a medium for smooth energy 

transition. As a result, the damper on the leg is the only energy 

dissipative source. In addition, all the analysis work is done 

in a dimensionless manner, and the variables of TDR-SLIP 

include 𝜏̃ =
τ

mg𝑙0
, 𝑘̃𝑡 =

𝑘𝑡

mg𝑙0
, 𝑐̃𝑡 =

𝑐𝑡

𝑚𝑙0√𝑔𝑙0
, ṽ =

v

√𝑔𝑙0
, α̃ = 𝛼, 

and 𝛽 = 𝛽. 

Finding fixed points is a typical method for analyzing the 

stability characteristics of the model. This is generally 

facilitated by using a return map analysis. For ordinary 

energy-conservative systems, the search for fixed points is 

one dimensional, and this indicates that the system can be 

regarded as stable as long as one of the state variables of the 

system, 𝑥 , remains unchanged throughout the motion (i.e. 

satisfying  𝑥𝑛+1 = 𝑥𝑛 = 𝑥∗). However, because the proposed 

TDR-SLIP model is not energy conservative, even when one 

of the states reaches its equilibrium (for example, touchdown 

angle 𝛼 with 𝛼𝑛+1 = 𝛼𝑛 = 𝛼∗), the model may not repeat 

its original motion but may gradually deviate to some other 

status. Thus, the two-dimensional map is essential, as reported 

in [7, 14]. In addition to the touchdown angle, the touchdown 

speed is chosen for analysis with criterion 𝑣𝑛+1 = 𝑣𝑛 = 𝑣∗, 

and this criterion is introduced to equalize the energy level in 

the model. The solving procedure is briefly described as 

follows. First, investigate the return map of the touchdown 

speed with a specific landing and different touchdown angles, 

as shown in Fig 3(b.1), where each line represents the model 

with a specific touchdown angle. Second, extract the fixed 

points plotted on the figure (i.e. intersecting with the black 

diagonal line), and replot them on the return map of the 

touchdown angle, forming a line segment. Third, repeat steps 

one and two with different landing angles, and the final plot 

consists of several lines as shown in Fig. 3(b.2), where each 

line represents the model with a specific landing angle. 

Finally, extract the fixed points plotted on the figure, which 

are the points satisfying the stability criterion. 

After the fixed points are determined, the next task is to 

check whether they are stable or not. Because the entire 

motion in stance phase cannot be integrated, it is difficult to 

find the exact Jacobian matrix for stability analysis. Therefore, 

we adopted the method reported in [7], where eigenvalues for 

an approximate numerical Jacobian matrix are utilized to 

determine the model’s stability.  

𝐽 = [
(𝑣̃∆𝑣

𝑛𝑒𝑥𝑡 − 𝑣̃∗) ∆𝑣⁄ (𝑣̃∆𝛼
𝑛𝑒𝑥𝑡 − 𝑣̃∗) ∆𝛼⁄

(𝛼∆𝑣
𝑛𝑒𝑥𝑡 − 𝛼∗) ∆𝑣⁄ (𝛼∆𝛼

𝑛𝑒𝑥𝑡 − 𝛼∗) ∆⁄ 𝛼
] (13) 
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Fig. 3.  Stability analysis of the TDR-SLIP model: (a) The one-dimension return map; (b) The process of finding fixed points with two-dimension 

return map: (b.1) Constructing the return map of touchdown speed 𝑣 of the model with a fixed landing angle and various touchdown angles, and (b.2) 

constructing the return map of touchdown angle 𝛼 of the model with various landing angles. The orange points in (b.1) are equivalent to the orange 

curve in (b.2). This analysis process is repeated several times using different landing angles. 
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In each evaluation, a 1% disturbance is given to one 

variable and the state variation is checked after one-period 

motion. Next, the matrix shown in (13) can be numerically 

determined, and this corresponding Jacobian matrix is utilized 

to check the convergence property from stride to stride. If any 

eigenvalue of (13) has a magnitude greater than 1, the fixed 

point is unstable. If both eigenvalues have a magnitude of less 

than 1, the fixed point is asymptotically stable. If one of the 

eigenvalues has a magnitude equal to 1 and the other 

eigenvalue has a magnitude of less than 1, the fixed point is 

marginally stable.  

Figure 4 shows the locations of fixed points of the R-SLIP 

model. Different colors represent the model with different 

dimensionless velocities, and the symbols ○, ●, and x 

represent unstable, marginally stable, and asymptotically 

stable fixed points, respectively. Figure 5 then shows the 

locations of the fixed points of both the TDR-SLIP model 

with different parameter settings and the ICs. Different colors 

represent the model with different dimensionless torques. We 

also find several facts from Fig. 5. (i) As the damping constant 

increases, the number of stable fixed points increases and the 

existence area of fixed points become larger in the direction 

of the landing angle. In the robotic application, the landing 

angle is usually directly controllable (i.e. by joint motors). 

Thus, the TDR-SLIP model with a higher damping constant, 

which allows a wider range of landing angles, is more flexible. 

(ii) The fixed points of the TDR-SLIP model exist with small 

touchdown angles and landing angles. At the same time, many 

fixed points of the R-SLIP model exist with large touchdown 

angles and landing angles. Therefore, the TDR-SLIP does not 

have the jumping gait of the R-SLIP model, but uses all of its 

energy in forward running. (iii) The locations of the fixed 

points of the TDR-SLIP model with different torques are 

closely spaced, which indicates that the torque can be 

controlled in a non-strict manner. When the torque is not 

applied at the right value, the performance of the model 

remains similar since the correct ICs of the given torque locate 

nearby. (iv) As reported in the literature and observed in the 

TDR-SLIP model, the torque and damper of the model should 

be matched to allow stable running. Figure 5 reveals that as 

the damping constant increases, the number of stable fixed 

points increases with the increase of torque. This observation 

is intuitively correct since the torque is an energy input, so if 

the damping constant is small, the energy cannot dissipate 

appropriately. 

III. ROBOT DESIGN 

The model-based robot design process mainly relies on the 

leg morphology and function. Previously, we completed the 

“template and anchor” experiment using the R-SLIP model 

on a RHex-style robot. RHex is a hexapod robot that 

originated at the University of Michigan. It has only one 

active rotational DOF per leg, each of which is made with 

compliant materials mimicking the elastic behavior of 

running animals. In that work, mapping was constructed 

between the complex half-circular compliant leg and the 1-

DOF reduced-order leg. In this current robot, while the 

general morphology of the body remains the same (i.e. rigid 

body, hexapod morphology, one active rotational DOF per leg) 

as shown in Fig. 6(a), the robot leg is completely redesigned 

to match the morphology and function of the TDR-SLIP 

model leg. Thus, the leg has an identical shape to the TDR-

SLIP leg, and has rotational spring and damper components.  

The unique curved leg shown in Fig 7(a) is designed for the 

realization of the TDR-SLIP model leg. The leg, like the 

model, is made up of two parts: the upper beam and the lower 

rim. The parallel dynamic system, composed of a torsion 

spring and damper, connects the upper and lower structures. 

The spring constant is chosen according to the optimal 

variable table from our previous research [13]. The damping 
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coefficient is chosen from the existing spring damping ratio 

in [15] with its several multiples. The damper is designed by 

using the principle of a coaxial rotating cylinder viscometer 

[16, 17]. The detailed components of the damper box are 

shown in Fig 7(b); this mechanism comprises covers, an inner 

cylinder and an outer cylinder. The chamber of the damper is 

designed to be filled with the high viscosity fluid.  

The design is based on several assumptions: (i) the liquid 

is incompressible; (ii) the motion is laminar; (iii) the stream 

lines of the liquid are circular; (iv) the speed is a function of 

radius only and there are no other velocity changes in axis 

direction; (v) there is no slip between the liquid and the 

cylinder. Then, the velocity change in the radial direction can 

be represented as 
dv

dr
= ω + r

dw

dr
                                (23) 

The ω term in (23) is generated by the radius difference, so 

it is not taken into consideration for the viscosity problem. By 

putting (23) into the definition of the viscosity we obtain the 

relationship between the viscosity constant and the torque 

η =
F

A
dv

dy

=
F

rA
dω

dr

=
τ/r

rA
dω

dr

=
τ

2πl

dr

r3dω
                 (24) 

By integral equation (24), we get 

ωr1
− ωr2

=
τ

4πlη
(

1

r1
2 −

1

r2
2)                     (25) 

As a result, the rotational damping constant can be written as 

ct =
τ

Δω
=

4πlη

(
1

r2
2−

1

r1
2)

                             (26) 

Silicon oil is used in our damper box for its stability and wide 

range of viscosities. The other geometric dimensions are 

restricted by the size of the leg of our previous robot version 

[18] in order to maintain interchangeability. The leg data is 

recorded in Table I. 

The properties of the damper are determined by the free 

vibration method. By watching the decay constant and the 

vibration frequency of the spring-damper parallel system, the 

damping coefficient can be found by solving the ordinary 

differential equation (ODE). The final result is lower than the 

design value – about 20% of the expected number. The shape 

of the inner and outer cylinder is then redesigned to increase 

the contact surface to compensate the loss caused by the high 

speed. The final damping coefficient of the damper box is 

0.17, which is 60% of our initial goal. This is the largest 

damping coefficient that can be achieved given the fabrication 

and dimension constraints of the machining process. The final 

results are listed in Table II.  

With the newly designed legs, the robot motion is 

generated following the strategy previously adopted. The 

widely-used alternating tripod gait is adopted for these 

running experiments owing to its stable and fast locomotion. 

The tripod legs provide stable motion for the spatial rigid 

robot motion (i.e. less pitch and roll). In addition, the two 

tripods are programmed to move in an alternating and 

symmetric manner; thus the robot should ideally move 

straight ahead (i.e. with less lateral displacement and yaw 

motion). As a result, the motion of the four un-modeled 

motion DOFs of the real robot should exhibit minimal 

variations. Figure 6(b) shows the schematic motion sequence 

of the robot with a tripod gait and the TDR-SLIP model. 

Because the robot is set to move as per the TDR-SLIP model, 

a full stride should include a stance phase and flight phase. In 

order to let the CoM move according to the TDR-SLIP model 

in the stance phase, all three legs of the tripod are 

synchronically actuated and rotated according to the TDR-

SLIP trajectory while they roll on the ground. Based on the 

assumption that the robot body remains horizontal during the 

whole of the stance phase, the leg orientation with respect to 

stance phase aerial phase

stance phase stance phaseflight phase flight phase

0o

180o

90o -90o

(a) (b)

 
Fig. 6.  The robot and its motion generation: (a) the RHex-style robot with TDR-LSIP legs; (b) The mapping from the TDR-SLIP motion to the robot 

tripod motion. 
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Fig. 7.  Realization of the TDR-SLIP leg: (a) Leg configuration; (b) The 

cross section of the damper. The blue area is the oil chamber. 

 

TABLE I  THE SPECIFICATION OF THE LEG 

weight 260g 

Damper position 60o 

Curved radius 70mm 

Width (Curve leg) 30mm 

Width (bar) 18mm 

Leg length 146mm 

 
TABLE II  THE PROPERTIES OF THE SILICON OILS 

Kinematic 

Viscosity  mm2/s 

200,000 500,000 1000,000 

w 64.88 62.07 62.831 

ct/2I 21 28.5 47.2 

ct/kt 0.0099 0.0148 0.0239 

Design ct 0.07 0.09 0.17 

ct 0.069 0.1036 0.1674 

error 0.5% 15% 1.5% 
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the body is actually equal to the generalized coordinate 𝜃 of 

the TDR-SLIP model. On the other hand, the period of the 

leg’s flight phase is much longer than that of the TDR-SLIP 

model because the two tripod legs are alternating. The flight 

phase of the leg covers two flight phases and one stance phase 

of the TDR-SLIP model as shown in Fig. 6(b). 

IV. EXPERIMENT 

The strategy of model-based robot design and motion 

generation is experimentally evaluated. In the experiment we 

choose legs with silicon oil with a viscosity of 500,000 mm2/s 

and 1000,000 mm2/s in order to realize the TDR-SLIP model; 

we use legs without oil to realize the R-SLIP model, for 

comparison. All experiment data is recorded by the ground 

truth measurement system (GTMS) which is composed of two 

250Hz high speed cameras and two 6-axis force plates. The 

robot runs at two speeds: 1.5m/s and 2m/s. In order to 

maintain motion consistency while the robot runs with 

different models, the fixed points of different models are 

chosen to have similar ICs. Figure 8 plots the robot’s 

experiment results. The plot clearly shows that the forces in 

the fore/aft and vertical directions, Fx and Fz, are zero for 

about 35-40% of each period, indicating the robot in flight 

phase. This confirms that the robot is operating in the dynamic 

running motion. The figure also shows that some delay exists 

for the model state change. This phenomenon is mainly 

caused by the fact that the spring-damper parallel system on 

the leg is still in compression when the robot starts to jump. 

The recovery force of the parallel system acts on the force 

plates, causing the ground-reacting forces to exhibit some 

delay in returning to zero. The experimental result is quite 

comparable to the trajectory of the vertical velocity of the 

model. In contrast, the forward velocity exhibits some offset, 

owing to slipping on the ground. TDR-SLIP needs a larger 

friction force to maintain the counter-torque of the motor than 

R-SLIP does, which accounts for the larger speed difference 

in TDR-SLIP versus the R-SLIP. In terms of the force, the 

experimental results exhibit a single compression in the 

vertical direction and a deceleration/acceleration pattern in 

the fore/aft direction – a typical running motion pattern. In the 

meantime, there exists a certain difference between the model 

setting and the robot behavior. In the simulation, torque is 

built instantly when the TDR-SLIP model touches the ground, 

yielding the nonzero forces during leg touchdown. In contrast, 

the ground-reaction forces of the empirical robot rise 

gradually after the leg touches the ground. Though not perfect, 

the TDR-SLIP method has certain advantages over the R-

SLIP. First, the passive running trajectory in the TDR-SLIP 

model does not have “reverse” leg rotation as it does in the R-

SLIP model. Reverse rotation would require the empirical 

motor to have high power and a fast response. Second, the 

robot running with the TDR-SLIP model is more stable as it 

has less standard deviation of motion. The high motion 

repeatability means that the TDR-SLIP can better reject 

disturbances from the environment. At the same time, as 

shown in Fig. 9, the TDR-SLIP model successfully 

suppresses the body pitch vibration, indicating that the torque 

and damper indeed have a positive influence on the dynamic 

behavior of the robot. 

V. CONCLUSION 

We report on the development and evaluation of the model-

based robot design and control strategy. Aimed at extending 

the previously developed R-SLIP model with realistic energy 

flow setup, the TDR-SLIP model is developed to serve as the 

template for the robot design. The stability properties of the 

models were analyzed numerically via return map analysis 

and several conclusions can be drawn. (i) The number of fixed 

points increases with the increase of torque and damping 

constants. (ii) By using the approximated Jacobian matrix for 

stability analysis, some fixed points are recognized as stable 

fixed points. (iii) The number of stable fixed points in the 

TDR-SLIP model is larger than that of the R-SLIP model. (iv) 

The TDR-SLIP can tolerate a wider range of torque variation. 

After the analysis, some of the stable trajectories of the TDR-

SLIP model are selected for implementation on the robot as 

the control guidance. 

On the design side, the robot leg is designed to match the 

morphology and function of the TDR-SLIP leg. The damping 

property of the leg can be altered by changing the viscosity of 

the silicon oil inside the damper. The free vibration 

experiment confirms that the function is effective, but that the 

quantitative effect is less than the estimation derived from the 

simple viscosity model.  

The robot running experiments are executed to evaluate the 

effectiveness of the model-based robot design and control 

approach. The results confirm that the robot can perform the 

running behavior at two designed speeds and with three leg-

property settings. Owing to the constant torque setting, the 

robot running with the TDR-SLIP model has more ground 

slippage than with the R-SLIP. Yet it has several advantages 

over the R-SLIP model: pitch disturbance rejection and 

running motion repeatability, which simultaneously reduce 

the motor power requirement.  

We are currently modifying the input torque profile so that 

the model condition can be better matched to real conditions. 

In the meantime, we are exploring other dynamic gaits on the 

robot to deepen the usage of the TDR-SLIP model as a 

template.  
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Fig. 9. The robot running with (a) the R-SLIP model and (b) the TDR-

SLIP model. The former has a larger pitch vibration than the latter. 
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Fig. 8.  The experimental data of robot running measured by the GTMS. The four colums from left to right are velocity and ground reaction forces in 

the fore/aft and vertical directions (Vx, Vz, Fx, and Fz), respectively. The first three and last three rows are the data with the robot running at 1.5m/s 

and 2m/s, accordingly. In each set, the colums from the top to the bottom are for the robot running with the R-SLIP model, the TDR-SLIP model with 

moderately sticky damper, and the TDR-SLIP model with very sticky damper. The red dashed curves are from the TDR-SLIP model, and the blue 

curves and vertical bars are the mean and standard deviations of five experimental runs. 
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