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ABSTRACT

This thesis provides a methodology of sensory system development for a hexapod robot,

working toward the development of dynamic behaviors utilizing feedback controllers.

We develop an approach to utilizing strain gauges together with a simple data driven

phenomenological model that simultaneously delivers information of leg touchdown, leg

configuration, and ground reaction force suitable for robots with compliant legs. The strain

gauges are implemented and models are constructed on two versions of RHex robot compli-

ant legs. Leg configuration is further evaluated under realistic robot operating conditions

by means of a high speed visual ground truth system.

We then introduce a continuous time 6 degree of freedom (DOF) body pose estimator

for a walking hexapod robot. Our algorithm uses six leg configurations together with prior

knowledge of the ground and robot kinematics to compute instantaneous estimates of the

body pose. We implement this estimation procedure on RHex and evaluate the performance

of this algorithm at widely varying body speeds and over dramatically different ground

conditions by means of a 6 DOF vision-based ground truth measurement system (GTMS).

We also compare the odometry performance to that of sensorless schemes—both legged as

well as on a wheeled version of the robot—using GTMS measurements of traversed distance.

Finally, we report on a hybrid 12-dimensional full body state estimator for a jogging

hexapod robot on level terrain with regularly alternating ground contact and aerial phases

of motion. We use a repeating sequence of dynamical models switched in and out of

an Extended Kalman Filter to fuse measurements from a body pose sensor and inertial

sensors. Our inertial measurement unit supplements the traditionally paired 3-axis gy-

roscope/accelerometer with a set of three additional 3-axis accelerometer suites, thereby

providing additional angular acceleration measurement (inertia torque), avoiding the need

for localization of the accelerometer at the center of mass on the robot’s body, and sim-

plifying installation and calibration. We implement this estimation procedure offline, using

data extracted from numerous repeated runs of RHex and evaluate its performance with

reference to GTMS, also comparing the relative performance of different fusion approaches

implemented via different model sequences.
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CHAPTER 1

Introduction

It is both fascinating and instructive to study the evolution of earth’s animals in response

to the highly diversified and changing environment. Animals develop particular forms and

mechanisms with high dynamical mobility in order to survive in their specific and localized

habitats. Though each animal’s appearance and behavior vary significantly, they share a

similar fundamental “structure” comprised of myriad sensors and usually a smaller number

of actuators—usually less than a couple hundred. Viewed at a very small scale, the environ-

ment is complex and changes rapidly over time, requiring animals to have enough sensors to

acquire environmental information (visual, audio, smell, etc), to cope with their interaction

with the environment (tactility, taste, etc), and to understand their own physical situation

(balance, pain, etc). Viewed at a larger scale, the structure of the environment changes little

over the span of an animal’s lifetime, allowing for a fixed morphology (skeletal structure

and actuators) to locomote over this environment.

The methodology of locomotion has a dramatic change with the advent of human civi-

lization. During the last two centuries, humans have had the desire to increase their mobility

(both manned and unmanned) by utilizing artificial devices. The major approach in human

history to accomplish this goal is to “prepare” the environment by changing the landscape

(usually by flattening it). For example, a car on a paved road, a train on railroad tracks,

jeeps with improved mobility for off-road travel, and more recently, small wheeled robots

in semi-structured environments. These wheel-based vehicles significantly enlarge the do-

main of locomotion for humans and are considered one of the major achievements of a

five-thousand year civilization. In this case, sensors are much less important than actuators

since the environment is made to be uniform, lowering the necessity of motion adjustment

by sensory feedback control. However, it would be a difficult and endless task to “prepare”

the whole environment since the geometrical surface of the earth is highly irregular and the

terrain badly broken. Not to mention the possible future colonization of other planets which

are also likely to have rough surfaces. One of the variants of a wheeled vehicle, capable

of engaging rough terrain, is a track vehicle. However, its ability to traverse over broken

terrain is still limited while its power consumption is comparably large to standard wheeled
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vehicles.

Apart from the challenge of developing devices with the ability to fly, a more generic

approach one can chose to increase mobility is the design of artificial devices capable of

traveling on rough and broken terrain, most likely, legged robots1. The best starting point

lies in understanding how an animal locomotes [Muy57, DFF+00], since at this point we

do not fully understand how to design complex actuation structures suitable for general-

ized locomotion. At the same time, we are also not at the point of being able to fully

mimic animals to create “artificial animals”. On the sensor side, current technology is not

capable of delivering millions of reliable sensors in a compact package. On the actuator

side, although we may be able to assemble hundreds of them to mimic animal shape2, in

general, the resulting robot does not have the same mobility since the power density of arti-

ficial devices is still much lower than that of animals. In addition, even if we accomplished

both, integrating them to generate effective dynamic motion like animals is still an unsolved

problem. More technically, unlike the wheel-based vehicles/robots that perform smoothly

in plane motion (3 degree of freedom, DOF), the legged robots move in all 6 DOF in 3-D

Euclidean space, thereby facing many more challenges of stability and dynamic-related is-

sues. These challenges inevitably require a large set of sensors for feedback control in order

to successfully behave dynamically in large domains. Section 2.1 briefly describes various

methodologies used to approach the challenging problem of developing a legged robot with

dynamical mobility.

1.1 Research Approaches to Legged Robot Design

The traditional approach to developing legged robots begins by mimicking live creatures

like insects or mammals to construct the essential robot form as well as to design the basic

moving mechanism3. As we have pointed out in the last section, the power density of

commercially available actuators is still too low compared to what animals have. For this

reason, in robot design the DOF of each leg is necessarily reduced to 3–5 in order to provide

the simplest mobility, more specifically, walking without any dynamics4 involved. In this

approach the robot is designed to have a template5 that can effectively be compared toto an

animal with the tradeoff of limited mobility to quasi-static motion in the first stage of design,

progressing toward dynamic locomotion once the technology provides better actuators and

1Hybrid leg-track or leg-wheel vehicles/robots [GBPB04] are other feasible solutions that try to utilize
the advantages of both systems. In this approach, understanding subsystems is usually the first step toward
a successful hybrid, which directly follows the necessity of exploring the leg system.

2For example, many current humanoid robots have comparable number of degree of freedom to humans
3Some exceptions are “legless” snake robots and worm robots which lie on a totally different region of

(dynamical) locomotion.
4Dynamics indicates the existence of energy exchange between potential energy and kinetic energy during

motion.
5A template is the simplest model (least number of variables and parameters) that exhibits a targeted

behavior [FK99].
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Figure 1.1: Spring-loaded inverted pendulum (SLIP)

better knowledge to design controllers for leg trajectories.

An alternative approach initiated around two decades ago focuses on utilizing simple

mechanisms with extremely low DOF for each leg to construct reliable robots that may

generate dynamic behaviors [Rai00]. In this approach, the robot is “anchored” with the

simplest “template” which can, in principle, represent the original high DOF system with

regard to motion [FK99]. For example, biological evidence shows that an animal running

can be modeled as a spring-loaded inverted pendulum (SLIP) [FGM93, DFF+00], shown

in Figure 1.1. It directly follows from the “template” to represent the high DOF leg as a

massless spring. As a result, utilizing compliant legs as passive springs to excite dynamic

behaviors and to compensate insufficient active DOF on legs is widely adopted in robots

following this approach. Additionally, low active DOF on each compliant leg results in

low power consumption which helps in deploying simple control strategies. Thus making

the robots autonomous and capable of performing dynamic behaviors—becoming “running

robots”, so to speak, standing as a milestone for exploring the dynamic robotics world. This

approach uses simple dynamic systems on a robot platform, providing a chance to apply

fundamental theory to practical implementation. The trade-off however, is that the behavior

of a robot only matches a certain behavior of an animal based on the model we select, and

is not able to represent the many behaviors that an animal might have. This indicates

that different behaviors in animals may require the anchoring of different “templates”,

which further necessitates the design of different robots for different behaviors. It is only

within this approach that we can fully explore the dynamic world from simple low DOF

systems which we truly understand from a theoretical point of view with strong support

from mathematics and physics. These systems will serve as the foundation for building high

DOF dynamic systems in which we may be able to generate different behaviors based on

different models with the same set of high DOF actuators. The long-term approach lies

in understanding basic dynamic behaviors, designing feedback controllers, increasing the

active DOF of the robots to generalize the internal mechanisms, and repeating this process

until the system is capable of wide-range mobility.

We strongly believe that the correct approach to building highly mobile robots capable

of locomoting like animals is to use simple and reliable mechanisms that are capable of

exciting specific dynamic behaviors. The hexapod RHex, to be detailed in Section 2.2,

3



serves as our first experimental platform to implement this idea. Using the knowledge and

experience of dynamic systems gained from RHex, we might be able to build more complex

platforms in the future.

1.2 Motivation

The hexapod RHex [BSK02] exhibits unprecedented mobility for a legged autonomous

robot [SBK01]. Using an open loop feedforward control strategy, the machine runs at speeds

exceeding five body lengths per second on even terrain [WLK04], and negotiates badly

broken and unstable surfaces, as well as stairs [MCGB02,MMB01,CB03]. Initial empirical

studies of controllers relying on cheap and inaccurate sensory feedback cues have resulted in

significantly improved performance (inclinometers on slopes [KMS+01]; leg touchdown cues

over broken terrain [WGK04]) and entirely new behaviors (body pitch sensitive accelerom-

eters for flips [SRK04, SK02] and bipedal gaits [NB03]; leg touchdown cues for pronking

gaits [MB01]).

Following this logic, a question arises: If more sensory feedback is available, can we

further improve the current behaviors and/or be able to explore other behaviors? We be-

lieve that the answer is yes. One example follows the work of a previous lab member Dr.

Saranli on theoretical considerations and simulation evidence of variable-speed dynamical

running gaits [Sar02] which suggests that the availability of accurate full body state esti-

mates as well as force interactions with the surrounding environment throughout the stance

and aerial phases of locomotion should confer considerably greater agility. A controller

for variable speed in wheeled vehicles is, in general, trivial—achieved by applying different

voltage/current to the motor or air/fuel mixture to the internal combustion engine. How-

ever, it is a challenging problem for legged robots which use the energy exchange of the

compliant legs to excite the continuous-time dynamic locomotion while maintaining full 6-

dimensional stability. It becomes even harder for legged robots with high DOF rigid legs to

apply large amounts of energy into motors to simulate spring effects due to the low power

density of current commercial motors. In addition to the variable forward-speed controller,

we explore the “legged-robot only” behavior—leaping, which requires sensory information

to adjust the motion in order to maximize energy exchange in precise timing. These pieces

of evidence and intuition together with the inspiration from animals motivate me to explore

the problem of how to construct an appropriate sensory system for a legged robot.

The fundamental questions following this motivation lie on what kind of sensory infor-

mation can be implemented on a robot, and which of them can be better used to improve

the dynamic behaviors by sensory feedback—a problem we are interested in. We may search

for a broad answer from the biological point of view by understanding what kind of sensing

information animals have. The high-level conceptual answers define a subset of general

animal sensory information, which includes environmental information (ground condition),
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interaction with environment (body/leg kinesthetics), and body status (body state, leg con-

figuration, inertial force/torque) as we pointed out in the beginning of this chapter. On the

other hand, we need also to complete the answer by considering the technological point of

view, checking the feasibility of the implementation. For example, achieving a high-density

micro force sensor array is not yet technological realizable reliably, due to limitation in

manufacuaring at a nano or even micro scale; on the other hand, it is feasible to get lin-

ear velocity with a robot which animals cannot estimate. Thus, we aim to explore and

implement the following sensing information for a legged robot:

• leg configuration — One of the important pieces of information regarding stability.

• foot touchdown/ground reaction force — Implementing pressure/force sensor arrays

(kinesthetics) on the whole leg is difficult, but obtaining solo-contact foot information

(touch, ground reaction) is feasible, and is sufficient for this primitive stage.

• full body state — Including 3 DOF center of mass (COM) displacement, 3 DOF body

orientation and their derivatives (linear/angular velocity). Different behaviors may

yield different approaches to algorithm development on the state estimation. In this

thesis we will focus on the standard alternating tripod gait due to its familiarity and

importance in hexapod robots.

• body inertial force/torque — These can be represented as a function of linear acceler-

ation to the body mass and angular acceleration to the body inertia. Since the mass

and inertia are usually constant, the required information is the 6 DOF linear/angular

acceleration (assuming that the leg has small inertia so its motion does not affect the

overall inertia).

1.3 Research Approach to Sensory System Design for a Hexa-

pod Robot

Building a sensory system that can deliver the information described above at data

rates relevant to motor control (∼1kHz to preserve dynamic stability) remains a challenging

problem in legged robotics due to the limitations of onboard instrumentation combined with

extreme variations in operating regime. Moreover, since legged machines by definition spend

a large fraction of their locomotion duty cycle in ground contact, the task of determining

appropriate models is greatly complicated by the uncertainty of the ground conditions (local

terrain shape, slipperiness, damping and compliance properties) and leg contact conditions

(which legs are in stance).

The leg sensory system detailed in Chapter 3 provides the information of foot touchdown,

leg configuration, and ground reaction force mentioned in Section 1.2. The generalized ver-

sion of this problem can be described as how to measure the configuration and force/torque
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of a compliant member when it is under external loads on both ends. We adopt a novel

approach to implement strain gauges together with assumptions of models that generate a

direct kinematic mapping from localized strain information to the compliant member (leg)

configuration and end-point force/torque (ground reaction force, motor torque) without in-

volving dynamics. The foot touchdown/liftoff status can be easily delivered by comparing

leg configuration to an empirical-set threshold. This methodology allows us to use a single

set of sensors to deliver all of the desired leg information.

Intuitively, the knowledge of the configuration relative to the body of each leg in contact

with the ground, together with information about the ground contact points yields complete

pose information. By pose6, we mean the full 6 DOF rigid body coordinates, 3 DOF

describing the COM translation and 3 DOF describing the orientation of the body, relative

to an inertial frame. In Chapter 4 we introduce a novel leg configuration-based full body

pose estimator (hereafter referred to as the “leg pose sensor”) for a hexapod robot in a

tripod stance7 with practical implementation on RHex. In that work we demonstrate that

a memoryless transformation built from data driven phenomenological models relating leg

strain to configuration together with a conventional kinematic model of leg configuration

to body pose can accurately estimate body position and orientation when the robot’s three

non-collinear legs are fixed on the ground, i.e. in each tripod stance. In walking gaits with

no aerial phase, the complete 6 DOF body pose in continuous time, also detailed in Chapter

4, can easily be extended from the above tripod-stance body pose from a purely kinematic

model without velocity state estimation. The velocity state appears to be less important in

this quasi-static walking locomotion.

In contrast, an alternating tripod runner experiencing significant aerial phases, with the

concomitant touchdown/liftoff transients8, would seem to require full body state estimation—

both velocity and configuration information. In order to build the required estimator the

sensor suite must incorporate enough information to allow the reconstruction of the full

state from a record of past measurement attached to some dynamical model. During stance,

complete 12 DOF continuous time body state estimates can be computed from the leg pose

sensor by means of direct measurement and recourse to online differentiation. Absent of

any other available sensors, these stance state estimates may be carried through the tran-

sient and flight phases only by the adoption of a particular dynamical prediction model.

Although the leg pose sensor delivers accurate high bandwidth body pose estimates during

stance (potentially marred by drift effects resulting from foot slippage detailed in Chap-

66 DOF body pose and their derivatives form a full 12 DOF body state.
7This term denotes the mode of leg contact wherein the three feet of the front and rear ipsilateral legs

and the middle contralateral leg of a tripod are all in contact with the ground.
8Note that hexapedal running gaits need not entail an aerial phase to be “dynamical” in the sense of

requiring careful management of kinetic energy to insure balance and steady progress [AMK+01]. However,
RHex develops its greatest energy efficiency and highest speeds in gaits with long aerial phases. Hence,
in this thesis, we focus our empirical tests on a “jogging” gait with an aerial phase exceeding 25% of the
complete stride. By “touchdown” and “liftoff” transients, we refer to intermediate configurations where
some number of legs fewer than three are in ground contact.
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ter 4), overall performance throughout a complete stride is limited by inaccuracies in the

transient phase models and the deleterious effects of online differentiation. In contrast, an

inertial measurement unit (IMU), a popular sensor, continuously delivers derivative, typi-

cally translational/linear acceleration and rotational/angular velocity information over all

phases of a stride. Saturation and drift effects9 in the physical sensor can dramatically

reduce the accuracy of the resulting integrated position estimates. The complimentary

strengths and weaknesses of the leg pose sensor and IMU allow us to forge a better body

state estimation than either one could achieve alone.

The traditional IMU (TIMU), comprised of 3 accelerometers for linear acceleration and

3 gyroscopes for angular velocity, hereafter abbreviated as “gyro”, can readily provide full

12-DOF body state estimates when it is precisely located, carefully calibrated, and its out-

put filtered appropriately10. Unlike the translational state components whose estimates

require double integration of the accelerometer data, the rotational component estimates,

requiring only a single integration step, might be expected to incur smaller errors. However,

these available sensory sources do not adequately subserve estimation models that take sec-

ond order dynamics into account. In the absence of angular acceleration measurements,

the literature reveals a strong predilection for first order dynamics usually assuming con-

stant velocity in preference to the direct differentiation that would otherwise be required

without very accurate and formally observable dynamical models. Moreover, the general

attitude toward contemporary cheap Micro-Electro-Mechanical System (MEMS) gyros sug-

gests that their inferior drift and saturation properties relative to MEMS accelerometers

may deteriorate any advantage at the signal processing stage. The considerable effort re-

quired to calibrate gyros detracts further from their inclusion in an IMU. Moreover, body

inertia information promises to play an important role in the future implementation of more

complicated models or feedback structures for dynamic running. Body inertia force can be

directly retrieved from accelerometer information, while inertia torque requires the angu-

lar acceleration information usually derived from a bank of accelerometers with a dynamic

equation. These facts all suggest the usage of angular acceleration data and angular veloc-

ity data, extracted if possible, from MEMS accelerometers for fusion. The falling cost and

volume of MEMS-based accelerometers, together with the possibility of eliminating entirely

the associated (theoretically innocent but pragmatically onerous) installation requirements

motivates our introduction of a new 12-axis accelerometer suite to match the idea of an

“advanced” IMU (AIMU) capable of delivering linear and angular acceleration as well as

angular velocity detailed in Chapter 5. We will show that the 12-axis accelerometer suite

9The traditional navigation-grade IMU for rigid bodies in flight has good performance, but typically lies
out of the range of robotics applications because of its cost and excessive volume.

10One of the strict constraint of utilizing traditional IMU to derive full body state is the requirement of
installing the 3-axis accelerometer at the COM. If not satisfied, the COM acceleration will be a function of
acceleration where the accelerometers are installed and a function of angular velocity and angular acceleration
which is derived by the differentiation of angular velocity data. In this case, the noise floor of the COM
acceleration data will strongly depend on the performance of both sensors and the differentiation process
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is theoretically capable of these three states with no recourse to gyros, but is impractical

in the present setting as a result of numerical ill-conditioning dependent upon the small

baseline RHex’s body affords. Therefore, in addition to the traditional 3-axis rate gyro,

this 12-axis accelerometer comprises the advanced IMU that we add to our previous leg

pose sensor to deliver full body state estimation in a hexapod robot with dynamical gaits

detailed in Chapter 6.

Delivering reliable full body state estimation requires both good sensory information

and appropriate models, which is even more of a challenge for the running locomotion that

involves hybrid-model switching. Unfortunately, developing an effective approach to mod-

eling a legged robot whose running gait is to be stabilized by state feedback estimates raises

the prospect of entering upon a circular path with no clear starting point. For an n-legged

machine there are 3n possible formal Lagrangian models: touchdown-stick, touchdown-slip,

and liftoff on each leg. These models include kinematic and dynamic properties of the legs

whose small relative mass lends them at best negligible influence upon the body apart from

the actuators’ affects. Hence, the adoption of an appropriately abstracted (12 dimensional

or lower) family of approximate models has strong appeal. Moreover, the approach to

gait stabilization that we favor provides growing theoretical [Sar02] and empirical [SRK04]

justification for the validity of these lower dimensional “template” control models. These

abstracted models apply to the steady state conditions that emerge from well regulated

gaits. Tractable feedback controllers that restore these gaits rely upon accurate estimates,

while tractable filters based upon familiar dynamical models can be expected to yield ac-

curate estimates only within well controlled gaits. For the present purposes of intelligent

sensor development, we rely upon open loop stabilizing gaits developed by offline tuning

experiments [WLK04] to bring the robot to a reliable steady state condition wherein famil-

iar and tractable models can be readily implemented. Having established and verified the

efficacy of these procedures for extracting reliable partial state estimates from the available

sensor suite from Chapter 3 to Chapter 5, Chapter 6 mainly addresses the effect of sensory

system to the state estimation with simple models. The support of leg pose sensor deliver-

ing displacement/orientation information renders the system observable, so the models only

affect the duration of time for transients before it delivers the accurate estimates. However,

the tradeoff to avoid the process of developing accurate models pays in the unavoidable time

and effort to develop a totally different sensory suite (leg pose sensor). Therefore, in the

meantime, we are also interested in exploring the alternate road—the possibility of good es-

timation by minimum sensory information using better models and algorithms. Section 6.5

introduces my collaborative work with Sarjoun Skaff and Alfred Rizzi at Carnegie Mellon

University (CMU) on context-based state estimation based on standard Interacting Multi-

ple Model (IMM) utilizing traditional IMU sensory information with additional “context”

(information of leg touchdown or raw acceleration) to provide better estimation of timing

to switch the models. Future research will combine the technology from both approaches
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and address the need and possibility for introducing more accurate physical models as well

as switching between them as the leg contact conditions change during complex transients.

1.4 Contribution

This thesis develops a framework for what a sensory system in a hexapod robot should

provide as feedback information, working toward the development of dynamic behaviors by

feedback controllers.

This thesis details an approach to the implementation of strain gauges together with

a simple data driven phenomenological model that simultaneously delivers information on

leg touchdown, leg configuration, and ground reaction force suitable to general locomotion

conditions like walking and running. This approach can also be utilized in the general

problem of measuring the configuration and end force/torque of a compliant member when

it is under an external load on both ends only.

We develop a novel leg-configuration-based within-stride full body pose estimator for a

hexapod robot when the robot’s three non-collinear feet are fixed on the ground, and also

extend the algorithm for continuous-time full 6 DOF body pose estimation in walking gaits

without aerial phases. We evaluate the performance of this algorithm at widely varying body

speeds and over dramatically different ground conditions by means of a 6 DOF vision-based

ground truth measurement system (GTMS), and also compare the odometry performance

to that of sensorless schemes, both legged as well as on a wheeled version of the robot, using

GTMS measurements of elapsed distance. The algorithm is quite generic and implementable

on other robots since in principle it only requires sensory information of the kinematic

relation between body coordinate system and a well defined foot coordinate system fixed

in the world frame. For a robot with point foot contact (usually in quadrupeds, hexapods

or others with a higher number of legs), this foot coordinate system can be established

by 3 non-collinear feet on the ground. For a robot with areal foot (usually bipeds), this

foot coordinate system can directly be defined on the foot pads. For typical robots with

rigid legs, the kinematic relation between these two coordinate systems can easily be sensed

by motor shaft encoders together with the physical dimensions of the links. For other

robots with compliant legs like RHex, it becomes more challenging since we need encoder

data together with the configuration of all sensible compliant members in order to obtain

the foot coordinates with respect to the robot body, which we successfully demonstrate

on RHex. This kind of leg configuration-based body pose sensor is extremely important

and perfectly suitable for quasi-static climbing legged robots11 since it not only relieves

the concern about accumulation error due to foot slippage (assuming a rigid leg contact to

the wall) but also reveals better performance than the IMU whose quality may be badly

deteriorated by integration error in this vibration-rich climbing motion.

11In actuality, a “dynamic” climbing robot does not yet.
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This thesis proposes a novel 12-axis accelerometer suite theoretically capable of deliv-

ering linear and angular acceleration as well as angular velocity (fulfilling the idea of “ad-

vanced inertial measurement unit (AIMU)”) by using the kinematic relationships of rigid

body motion without integration or differentiation. This suite provides additional angular

acceleration measurement compared to the traditional inertial measurement unit (TIMU),

avoids the need for gyros and for localization of the accelerometers at the center of mass on

the robot’s body, simplifies the installation and calibration. The partial state provided by

the advanced IMU not only yields body inertia force/torque information but also delivers

essential sensory feedback for full body state estimation when the robot operates in jog-

ging/running gaits with aerial phases. The application of this 12-axis accelerometer suite is

not limited in legged robots but can be deployed on mobile robots, vehicles, or other moving

objects, especially suitable for a device with volume equal or greater than a cubic meter.

One example of where developers have started to install inertial sensors in order to have

better control is in automobiles. This design is also very useful in utilizing low-cost MEMS

sensors as inertial sensors where the gyro is problematic in calibration and saturation.

We report on a hybrid 12-dimensional full body state estimator for a hexapod robot

executing a jogging gait in steady state on level terrain with regularly alternating ground

contact and aerial phases of motion. The algorithm uses a repeating sequence of continuous-

time dynamical models that are interleaved in an Extended Kalman Filter (EKF) to fuse

measurements from a novel leg pose sensor and an advanced inertial measurement unit

comprised of a 12-axis accelerometer suite and a 3-axis gyro. This thesis implements this

estimation procedure offline, using data extracted from numerous repeated runs of the

hexapod robot RHex (bearing the appropriate sensor suite) we evaluate its performance

with reference to a visual GTMS, comparing as well the relative performance of different

fusion approaches implemented via different model sequences. The algorithm is generic and

can be applied to a large number of settings in different levels based on the results gained

from experiments. Generally speaking, for a multi-model hybrid system with or without

specific model sequences, stable state estimation is achievable by utilizing simple models

as long as some subsystems are observable and their time durations are long enough for

the observer to converge and decrease the drift that happens in the remaining unobservable

states. From a low level point of view, adopting this algorithm to other legged robots for

body state estimation should be simple since it only requires an IMU and leg-configuration

sensor whose requirements are detailed above, not tied to model selection for each mode

since the models are motion and robot independent. For a biped, the approach is even

simpler since it only has two modes, ground and aerial. From a higher level point of view,

this methodology can also be applied to other kinds of sensor fusion in hybrid systems with

mode-dependent sensory information.
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1.5 Organization of Dissertation

Chapter 2 provides background knowledge to bridge the motivation and chosen ap-

proaches introduced in Chapter 1. Section 2.1 briefly reviews existing legged robots designed

from both traditional and alternative approaches as described in Section 1.1, followed by a

brief introduction to RHex and its specifications and behaviors. Section 2.3 reviews past

work in related topics.

Chapter 3 introduces the general concept of leg sensory systems in a legged robot and

demonstrates a set of specific applications utilized on the robot RHex. Section 3.1 introduces

the information gained from each leg at a high concept level, followed by a brief summary of

RHex’s 4 different leg versions in Section 3.2. Section 3.3 illustrates the modeling framework

of the compliant legs, followed by Section 3.4 showing the setup of an experimental table

utilized to collect the required information for leg modeling. Section 3.5 introduces a specific

setup to measure RHex’s leg configuration in order to evaluate the performance of the

modeling. Finally, Section 3.6 and Section 3.7 illustrate specific applications of the leg

sensory system.

Chapter 4 introduces a computational algorithm for a within-stride and continuous-time

body pose estimator for a hexapod robot utilizing the leg configuration sensor introduced in

Chapter 3. Section 4.1 introduces the algorithm of body pose estimation, including within-

stride body pose detailed in Section 4.1.1, odometry via sequential composition in Section

4.1.2, and a short discussion in Section 4.1.3. In Section 4.3 we evaluate the performance of

this algorithm at widely varying body speeds in Section 4.3.1 and over dramatically different

ground conditions in Section 4.3.2 by means of a 6 DOF vision-based GTMS detailed in

Section 4.2. We also compare the odometry performance to that of sensorless schemes, both

legged as well as on a wheeled version of the robot, using GTMS measurements of elapsed

distance in Section 4.3.3, followed by a short discussion in Section 4.4.

Chapter 5 introduces a framework to construct an advanced inertial measurement unit

delivering linear and angular acceleration as well as angular velocity by a novel 12 DOF

accelerometer suite. Section 5.1 briefly reviews previous related work on angular acceleration

measurements, followed by Section 5.2 that introduces a 3-dimensional coupled calibration

which improves the accuracy of the measurement on practical implementation. Section 5.3

describes the methodology, characteristics, and initial experimental results of this 12 DOF

accelerometer suite.

Chapter 6 introduces a hybrid 12-dimensional full body state estimator for a hexapod

robot executing a dynamical gait in steady state on level terrain. Section 6.1 introduces

some notation and illustrates the nature of the open loop stabilizing (“jogging”) gait we will

study subsequently. Section 6.2 summarizes the acquisition of partial state (body pose from

leg pose sensor; linear and angular acceleration as well as angular velocity from advanced

IMU) from raw sensor data. Section 6.3 describes the various dynamical models in each

phase of a stride from which we construct statistical filters for full body state along with
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the details of how to fuse the two independent sensing sources (leg pose sensor and IMU),

summarized in Section 6.2. Section 6.4 examines the accuracy of the resulting body state

estimator implemented on RHex. Section 6.5 briefly introduces the context-based body

state estimation12 also for a hexapod robot executing a jogging gait in steady state on level

terrain with regularly alternating ground contact and aerial phases of motion.

12In collaboration with Sarjoun Skaff and Alfred Rizzi at Carnegie Mellon University.
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CHAPTER 2

Background

This chapter provides background knowledge to bridge the motivation introduced in

Chapter 1 and my work in the following chapters. Section 2.1 briefly reviews existing

legged robots designed from both traditional and alternative approaches as described in

Section 1.1, followed by a brief introduction of RHex and its specifications and behaviors.

Section 2.3 reviews past work in related topics.

2.1 A Brief Introduction to Legged Robots

The majority of the existing legged robots follow the traditional research approach in-

troduced in Section 1.1 that use a higher DOF leg, and as a result, generally perform

in quasi-static walking gaits due to power limitation and unclear control strategy. In

the early 90’s the AI Lab at MIT explored the idea of “robot insects”, and two walk-

ing robots, Genghis [Bro89] and Hannibal [Ang91, Bre93] were built, each with 18 DOF

in legs, as shown in Figure 2.1(a)(b). Dr. Quinn’s group, Biologically Inspired Robotics

Lab at Case Western Reserve University, has built a series of cockroach-inspired robots

[QNB+03, QNB01a, QNB+01b, Tau00]. Robot III [NQ99, NQ98, NQB+97], with 24 DOF

in legs, and robot V [KQR03], with 24 DOF in legs, are shown in Figure 2.1(c)(d). How-

ever, due to their low power density and complicated control structure, these robots can

only perform ”sit” and ”stand” maneuvers, but do not walk. Forschungszentrum In-

formatik (FZI, Research and Information Center) in Germany has also built a series of

robots following the same approach—Lauron I [BCI94], Lauron II [CBL97], with 18 DOF

in legs, and the latest Lauron III [GSB01, GZZD05] which is equipped with multisen-

sors for feedback walking, depicted in Figure 2.2(a). Other robots within this category

are Hexapod [DN00], Figure 2.2(b), with 18 DOF in legs, from UIUC; octopod Scor-

pion [SK00, KLSK01], Figure 2.2(c), with 24 DOF total, from Institut Autonome Intel-

ligente Systeme (AIS, institute of autonomous intelligent systems) in Germany; and octo-

pod LobsterRobot [AWM+00, AWW+00], Figure 2.2(d), for underwater application from

Northeastern University. Thanks to the availability of low-cost serve motors and controller

13
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(c) (d)

Figure 2.1: Photos of robots with high DOF legs: (a) Genghis from MIT; (b) Hannibal

from MIT; (c) Robot III from CWRU; (d) Robot V from CWRU

chips, it is relatively easy to find hexapods being built by amateur robot hobbyists outside

of those being built by academic institutions. Though they may not be professional enough

to explore at high level research, most robots walk well by just simple sequential position

control.

Dr. Raibert’s group, Leg Lab at MIT, pioneered the alternative approach, also detailed

in Section 1.1, by analyzing the dynamics of a simple hopper [Rai00] in the 80s. No actual

autonomous multi-legged robot utilized this idea well until the mid 90’s after Dr. Buehler’s

group, Ambulatory Robotics Lab at McGill University Canada, built the Scott series [SP04,

PSB04, PB00, PSB03]. Scott I and Scott II are quadrupedal robots with only one active

rotational DOF and one passive linear DOF in radial direction on each leg. Scott II shown

in Figure 2.3(a) is the first robot capable of performing a dynamic gallop gait [SP04].

The hexapod RHex [SBK01] built in the collaboration of Dr. Koditschek’s group at the

University of Michigan, Dr. Buehler’s group, and Dr. Rizzi’s group at CMU is one of the

most exciting robots in this field. It has only one active rotational DOF and 1–2 passive

translational DOF depending on the type of legs. RHex, shown in Figure 2.3(b), referenced

as one of the most versatile behavior excited by either openloop or feedback control, is

also the experimental platform for my thesis work. Thus, detailed specifications will be

introduced in Section 2.2. The Sprawl series [CKC04, CBC+02,KCC04] shown in Figure
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(c) (d)

Figure 2.2: Photos of robots with high DOF legs: (a) Lauron II from FZI; (b) Hexapod

from UIUC; (c) Scorpion from AIS; (d) LobsterRobot from NEU

2.3(c), built by Dr. Cutkosky’s group, Dextrous Manipulation Lab at Stanford, has a similar

hexapod form but with an opposite design strategy—one active translational DOF and one

passive rotational DOF on each leg. The latest version of robot iSprawl [KCC04] performs

the fastest running gait, 15-bodylength/sec, in the legged robot world. The quadrupedal

robot Tekken series [FhKC03,KFK01,KAS99, ZFhK05, ZFhK04], shown in Figure 2.3(d),

from Dr. Kimura’s group in Japan utilizes the same idea to store and release spring energy

for locomotion, but instead of exchanging spring energy through natural robot dynamics,

it accomplishes that artificially by controlling the timing of windup and release leg springs.

This mechanism combined with specific leg trajectory design yields a more elegant and

natural looking locomotion. However, this reciprocal swing motion of the legs (continuous

accelerate/deaccelerate motors) significantly increases the energy consumption as well as

decrease the ability of overcoming obstacles. Dr. Waldron’s group, Robotic Locomotion

Lab at Stanford, also developed a quadrupedal robot Kolt shown in Figure 2.3(e) based on

a similar windup/release spring idea, whose shape resembles the one legged hopper robot

built at CMU [BZ98] shown in Figure 2.3(f).

Another approach taken by some researchers includes the combination of legs with other

mechanisms like wheels or tracks. Dr. Quinn’s group, Biologically Inspired Robotics Lab, at
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(e) (f)

Figure 2.3: Photos of robots with compliant legs: (a) Scott II from McGill; (b) RHex

from the University of Michigan (standard version with half-circle legs); (c) Sprawlita from

Stanford; (d) Tekken II from Kimura’s group; (e) Kolt from Stanford; (f) One Leg Hopping

Robot from CMU

Case Western Reserve University, also built a series of cockroach-inspired robots “Whegs”

with simple rigid “legs” that combines the advantage of wheels and legs [LHQ05,QNB+01b],

MiniWhegs shown in Figure 2.4(a). The robot uses “multilegs” to simulate the effect of

wheels, increasing the mobility on flat terrain, and a discontinuous “wheel” that preserves

the advantage of “legs” to overcome obstacles. These robots can move fast and pass broken

terrain to a certain level; however, the motion is not dynamic and may not be able to
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Figure 2.4: Photos of robots with legs and wheels: (a) MiniWhegs from CWRU; (b) Hylos

from Bidaud’s group

Figure 2.5: Rumba (RHex version 1.7) with the 4-bar legs equipped with strain-based leg

configuration sensors (leg pose sensor) stands in a meadow

generate legged-creature-only motion like running, leaping or grasping. Dr. Bidaud’s group,

Laboratorie de Robotique de Paris at Universite Pierre et Marie Curie, developed a robot

Hylos, shown in Figure 2.4(b), which has small wheels in the end of each legs. The “legs”

in this robot merely act as the mechanism to adjust the relative locations between wheels

and the body to maintain the balance (small pitch and roll angles) when the robot operates

on the uneven terrain. Perhaps the more precise description of this robot is an enhanced

wheeled robot.

2.2 A Brief Introduction to RHex

An introduction to the hexapod robot RHex [SBK01], shown in Figure 2.5, is presented

in this section to give readers a better understanding about its construction, components,

functionality, and behaviors. This is the platform I am currently working on.

• Basic Specification — Dimensions: 50cm (length) x 25cm (width) x 15cm (body

height) or 25cm (total height when standing, body plus leg); weight: 8.5kg
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• Computation — The main computation and control is run under customized RHex

code written in the C++ language on the QNX 6.0 real time operation system (OS) in

a “computer-like” PC104 stack (running industrial standard PC104+ bus) composed

by a CPU board (Lippert Automationstechnik, Cool Runner, Pentium II 300MHz),

an encoder board (Micro Computer System, MSIP400), a power board (Real Time

Device, EPWR104), a PCMCIA adapter for wireless card (VersaLogic Corporation,

PCM3115), and customized RHio board for RHex I/O interface. The computation

for the vision system is operated in Linux on a second PC104 stack composed by a

CPU board and a firewire board.

• Actuation — Designed for simplicity, the robot has only 1 active rotational DOF per

leg driven by a DC brush motor (Maxon, RE-25, 20W) with gearbox (Maxon, GP-

32C, ratio 1:33) and encoder (Maxon, HEDS 5540). It has 1 or 2 passive DOF per leg

either by using compliant 4-bar legs or half-circle legs accordingly. The control signal

sent from the RHio board goes through a motor drive board (MDB) to amplify the

signal to the motors.

• Sensing — The standard version of RHex is equipped with the following sensors: a

3-axis optical rate gyro (Fizoptika, 941-3A), two 2-axis MEMS accelerometers (Ana-

log Device, ADXL210) to construct 3-dimensional measurement along three principle

axes, a firewire camera (SONY, DFW-X710), 6 encoders for motor position, 8 temper-

ature sensors (monitoring temperature of 6 motors, heat sink on motor drive board,

and body chamber), and sensors for voltage and current measurement. In order to

proceed with my research, I also installed the following sensors in one of the robots,

Rumba, shown in Figure 2.6: three 1-axis MEMS gyro (Analog Device, ADXRS300) to

construct 3-dimensional measurement along three principle axes, eight 2-axis MEMS

accelerometers (Analog Device, ADXL210) to construct 3-dimensional measurement

along the three principle axes in four different locations of the robot’s body, and 1

(for the 4-bar leg) or 2 (for the half-circle leg) strain gauges on each legs to acquire

its configuration.

Data from the MEMS sensors is acquired directly by another I/O board (Microsys,

MPC550, 12bit per channel) through wires at the rate of 1KHz, the same as the

main-loop computation. In contrast, RHex’s freely rotating legs introduce a signifi-

cant technical difficulty in taking measurements from any sensors installed on them—

this is essentially a “remote sensing” problem. In our implementation, strain gauge

measurements are transferred to the PC over a bi-directional wireless communica-

tion network, LegNet [Kom05], featuring a 50 Kbaud communication channel over a

916MHz carrier connecting a master located in the PC104 stack on the body to six

self-contained microcontroller based slave units mounted on each leg. In this setting

we achieve synchronous sampling of all strain gauges at 333Hz at a 6-bit resolution.
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3-axis MEMS Accelerometer Suite

3-axis MEMS Accelerometer Suite

3-axis MEMS Accelerometer Suite

3-axis MEMS Accelerometer Suite

3-axis Optical Gyro

3-axis MEMS Gyro Suite

LegNet

Strain Gauges

Figure 2.6: Photo of RHex with sensors, including four 3-axis MEMS accelerometer suites

(form a 12-axis accelerometer suite), 3-axis optical gyro, 3-axis MEMS gyro, and a leg

sensory system (strain gauges and LegNet on all legs).

• User Interface — A customized Graphic User Interface (GUI) runs on host laptops

equipped with Linux OS, utilizing a joystick (Logitech, WingMan Cordless Rum-

blepad) to control the robot through a wireless network.

RHex, which is presently driven by task-level open loop controllers, performs extraordi-

narily mobility in different behaviors including:

• Tripod Walking no aerial phase

• Tripod Jogging [WLK04] with aerial phase, tuned for energy efficiency

• Tripod Running [WLK04] with aerial phase, tuned for maximum speed

• Stair Climbing/Descent [MCGB02,MMB01,CB03]

• Hill Climbing

• Pipe Climbing

• Leaping

RHex also performs the following behaviors with feedback controller:

• Slope Climbing [KMS+01] with accelerometer as inclinometer
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• Back Flip (Self-Right) [SRK04,SK02] with partial state feedback provided by gyro

• Bipedal Walking [NB03] with partial state feedback provided by gyro

• Pronking [MB01] with foot touchdown sensing by motor current

• Rough Terrain Passing (Coordination Controller) [WGK04] with foot touchdown sens-

ing by motor current

• Bouncing with foot touchdown sensing by motor current

• Fly-by-Wire (Inertial-Assisted Navigation) [SKMR03] with IMU

• Vision-assisted Walking/Jogging [SKMR03] with camera

2.3 Literature Review

The scope of this dissertation covers the design of a sensory system on a legged robot

which provides the sensing information of leg status (foot touchdown, leg configuration

and ground reaction force), inertia force and torque, and full body state when the robot

operates in the quasi-static or dynamical gaits (walking or jogging) as detailed in Section

1.2. Therefore, the literature survey mainly involves research work related to the above

topics1.

The amount of available literature easily reveals the major trends in the robotics field

and the problems people are interested in. It is without doubt that wheel-based robots

strongly dominate robotic research. As a result, their development is further ahead of

legged robots. Though some design principles may vary from wheel-based robots to legged

robots, the literature regarding the development of wheel-based robots still offers a good

reference and provides a guideline through this learning and comparison process.

The treatment of strain gauges as the sensing source to derive leg configuration or

ground reaction force on the compliant legs detailed in Chapter 3 appears to be novel since

no literature found regarding this issue. This is probably due to the fact that only few legged

robot are designed with compliant legs for energy exchange, and even fewer of those have

sensing capability on the legs. While strain is traditionally used for force [LDR+99, IH01]

or torque [YIT03] measurement in the load cells, with the assumption of linear relation

between strain on the designed local structure and the external force or torque, we explore

the feasibility of utilizing local strains to represent overall configuration or end forces of a

given massive structure (legs).

1We conducted systematic searches for mobile/legged robot state estimation (estimator), mobile/legged
robot sensor fusion, mobile/legged robot odometry, mobile/legged robot pose (posture), mobile/legged robot
positioning/navigation/localization, mobile/legged robot inertia navigation, robot leg sensor, Kalman Filter,
angular acceleration across the standard bibliographic databases—Engineering Index (Compendex), IEEE
Xplore, and ISI Web of Knowledge.
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The localization, positioning and navigation problems have been treated extensively in

the robotics society. For traditional wheeled robots, these problems concerning a “partial

state,” including COM displacement in horizontal plane and body yaw angle (here after re-

ferred as “localization” state), can be considered as a subset of our generalized description

of full 12 DOF body state. In 1997 Dr. Borenstein published a survey paper [BEFW97]

regarding available commercial sensors and up-to-date positioning techniques for mobile

robots, including two major fields—relative positioning and absolute positioning. The for-

mer, usually implies odometry or inertial navigation [WT00, BS01, BDW95, Gre95]. The

latter, usually combines the relative positioning technology to the sensor providing absolute

locations by means of the so called “sensor fusion technology”.

Odometry obtained by simply counting the motor shaft revolution by encoder is treated

as the fundamental technology for positioning in wheeled robots; however, it is also notorious

for its unbounded estimation error due to wheel slippage [Rud03,Mar02,BF96b,Mar01a].

Researchers try to reduce this error using approaches that include fusing with gyro [COB01,

PCCL97, BF96a], providing environment map [HMA03,GMR01], or equipping the sensor

capable of absolute positioning has global positioning system (GPS) [GRS99] or vision for

landmark detection [BG01]). In contrast to the odometry whose accuracy depends on the

ground condition, another relative positioning techniques utilizing inertial measurements are

capable of representing true body pose as well as is extendable to other kinds of robots or ve-

hicles. However, the same notorious drift problem exist due to integration error [SNDW00,

NDW99b,MED98]. Thus, several approaches aimed to improve the estimation include us-

ing precise calibration and alignment [NDW99a, BhFDW95, LPP93, GHM91, DSNDW99],

better choice of models (ground [JDW03,DSNDW01], underground [SDNDW99], underwa-

ter [GASH01], air [RH04, SGG+00, KBI99]), and more generically, upgrading to absolute

positioning by fusing with other sensors.

The idea of sensor fusion for state estimation has spread widely within the mobile

robotics community, largely for application to wheeled vehicles addressing algorithm de-

velopment, hybrid system [EAM01,DMC00], decentralized structure [NBDW99,BNDW98],

multi-level fusion [RPS01], controller design [AA02], and some practical implementation

[MSDW01,KZK97, AA02, PRS01]. Among all, the key component is the well-known lin-

ear filtering technology Kalman Filter [Kal60], the linear filter for prediction proposed

by R. E. Kalman in 1960. Its unique structure helps to recover full state of the linear

model by the correct weight ratio determined by noise of the model and the input from

sensors based on some generic assumption. Over the decades researchers have evaluated

its performance [RB02, RSB99], adopt this filter on different kinds of sensor fusion [FT-

PHBB00,SW99], and to improve the original algorithm (for example, to extend it to non-

linear systems [JU97,JUDW00]).

Recent and effective approaches to improving navigation accuracy in outdoor mobile

robots or vehicles is the fusion of inertial measurement with GPS [ER02] data [PPU02,

21



SNDW99, Kni97,MHJ94]. Utilizing such a low-cost positioning recalibration device, the

requirement of inertial measurement unit decreases, resulting in wide spread model im-

provements [FT00b,FT00a,Wei96] and various applications (ground vehicles [Bev04,SW03,

MV98], underwater vehicles [YBA+01,SHM97]). This challenge involves a series of unsolved

problems such as selecting between a tight or loose fusion approach, choosing appropriate

models for each sensor and for fusion, and synchronizing data. A similar situation oc-

curs in the fusion of inertial measurements to vision data [Dez99,RV90,RJM02,LD98], the

equivalent approach for indoor application2.

Notwithstanding its importance for a more agile and responsive RHex [Sar02], we have

been surprised to discover that there is no prior account of a complete body pose sen-

sor in the legged robot literature. We have found literature about dead-reckoning er-

ror [MMAI01], positioning [OIYH98, SS01, KS92], and some prior work on exteroceptive

vision based [Mar01b,LK03,BSW00,HKA97] approaches to positioning for legged machines.

These algorithms, however, are specifically designed for their particular robots, which are

not compatible with a general legged robot setting. We also found literature related to

body orientation, and posture control for BIPED [Gor99], for quadruped [RI01,AH96], and

for hexapod [FAH+95] orientation estimation aimed for a walking robot [RH00]. However,

they are all focused on the foot force distribution or stability and balance by active feedback

controllers. In addition, their algorithm are too specific to be generalized for other legged

robots. Thus, our treatment of complete pose appears to be novel.

My work in Chapter 4 utilizing encoder data and leg configuration to obtain 6 DOF

body pose can be treated as “odometry” for legged robots. The leg configuration data is

necessary since the assumption of constant distance between ground and motor shaft varies

in legged robots. In addition, the pattern to generate locomotion appears to be different

as well. The accuracy of body pose estimation in localization states (COM displacement in

the horizontal plane and body yaw angle) is determined by a foot slippage condition which

requires further absolute positioning for long-distance locomotion, similar to the odometry

in wheeled robots. The remaining three states, pitch, roll, and COM displacement in the

vertical direction, here after referred as “stability” state, uniquely belong to legged robots,

remaining bound and providing good high-frequency estimation.

Determining the relative pose of a manipulated object has won significant attention

within robotic hand literature, especially for industrial autonomous robots, which yield

various kinds of research on the problem of “grasping” for a robotic hand. For example,

grasping irregular object after a simple detection scheme [LOS+00, KT94]; using haptic

sensors to detect shape and hollowness of deformable objects [EETP99]; research on grasping

policies by acquiring state [GJ02]; developing fingernail sensors to detect finger posture

and shear force [MA01]. Considering a legged robot standing on the ground as a “ground

2Some sensors other than inertial measurement and GPS are also utilized in the navigation problem on
mobile robots, like ultrasonic sensor [MAG+02], sonar [WC00], vision [BAL00,MKS99], angle measurement
[HS96] and geometrical map [BA02].
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grasping” problem becomes a much larger challenge since it strongly depends on the correct

usage of gravity instead of the clamp force generated by an internal hand structure For that

reason, there exists no literature on similar research for legged robots as of yet. Studies

on ground force detection [NMK+02] or redistribution of ground force among robot legs

[RI01,KIJ01] will serve as the basis of research in this direction.

While the localization, positioning or navigation problem addresses an important issue

on wheel-based robots, that of legged robots reveals to be much more complex, not only

because the motion expands from three to six dimensions, but also because the region of

locomotion moves from quasi-static to dynamic3. The importance of the velocity state in

legged robots during dynamic motion forces the estimation problem to expand into a 12

DOF body state, significantly more complicated than the typical 3 DOF state found in the

wheel-based robots. In addition, it is also intuitively clear that full body state estimation

on a legged robots will require certain sensor fusion techniques due to the wide range of

dynamic motion over the limit that a single sensor can achieve. For this reason, few legged

robots exist in the world, and even fewer of those are capable of dynamic locomotion. Of

course, on some level, the fusion of IMU and the leg pose sensor is similar to some approaches

used in wheel-based robots. For example, for localization states like COM displacement in

the fore/aft and lateral directions together with yaw, our approach can be “morphed” as

the fusion of IMU and “odometry” sensor, which incurs the threat of drift due to foot

slippage. On the other hand, for stability states, pitch, roll, and COM displacement in

the vertical direction, our approach is similar to the traditional use of vision or GPS to

eliminate drift in the standard mobile robot fusion problem. However, there are important

differences between these two “drift-reset” mechanisms: First, the leg pose sensor operates

at sampling rates as high as those of the IMU, not like vision or GPS that have low update

rates; second, the leg sensor provides higher accuracy estimates than differential GPS or

vision can achieve. In summary, we find no prior statement nor solution of the problem

posed by our work described in Chapter 6: the fusion of leg pose and IMU sensor data for

a legged robot with dynamical gaits. In addition, including angular acceleration into the

IMU for state estimation also appears to be novel.

We are not surprised that the derivation of angular acceleration [OV98] draws some

attention in the robotic society, which has typically been detained mathematically from

dynamic equations with linear acceleration measurement. The idea of an all-accelerometer

IMU is directly followed since linear and angular acceleration, covers both translational and

rotational space, can both be derived from accelerometers. This also yields the question

of how many accelerometers are necessary. The standard approach of using 6 accelerom-

eters yields unbound estimation error due to the possibly-drift integrated angular velocity

appearing in the dynamic equations4. Hence, Dr. King [PKK75,MK79] introduced a novel

3In my opinion, it is this complex nature that makes working with legged robots far more interesting.
4Particular applications with small angular velocity may ignore its effect and simplify the dynamic equa-

tion [AKR03].
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9-axis accelerometer suite delivering bounded linear and angular acceleration by eliminat-

ing the effect of the angular velocity by these 3 extra accelerometers. Unfortunately, this

scheme requires that the accelerometer suite be very accurately installed at a specific spa-

tial configuration, which significantly reduce the feasibility for a practical installation. Dr.

Debra’s group [CLD94, LH02, LL99] conducted a series of work on a 6-axis accelerometer

suite that can deliver stable angular acceleration but with the tradeoff of losing stability on

linear acceleration, since it becomes a function of unbounded angular velocity. Nevertheless,

though we may save the cost of the accelerometers, if we only consider angular acceleration,

this approach imposes a very strong constraint on the location and orientation of the 6

accelerometers yielding even lower feasibility for implementation [TPMV01]. Possibly elim-

inating entirely such theoretically innocent but pragmatically onerous requirement together

with the falling cost and volume of MEMS-based accelerometers motivates our introduction

of a 12-axis accelerometer suite detailed in Chapter 5 as an “advanced IMU” capable of

delivering linear, angular acceleration and angular velocity.
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CHAPTER 3

Leg Sensory System

This chapter introduces the general concept of the leg sensory system on a legged robot

and specific applications utilized on the robot RHex. We implement strain gauges on the

compliant parts of RHex’s legs to detect leg touchdown/lift-off status and to estimate leg

configuration and ground reaction forces. This methodology provides an unique approach

to delivering multisensory information from a single sensing source that can be generalized

to a family of legged robots with compliant legs.

Section 3.1 introduces the information gained from each leg in a high concept level,

followed by a brief summary of RHex’s 4 different leg versions in Section 3.2. Section 3.3

illustrates the modeling framework of compliant legs, followed by Section 3.4 showing the

setup of an experimental apparatus utilized to collect required information for leg modeling.

Section 3.5 introduces a specific setup to measure RHex’s leg configuration in order to eval-

uate the performance of the modeling work. Finally, Section 3.6 and Section 3.7 illustrate

the specific applications on the idea of the leg sensory system.

3.1 Information from the Leg

The first question that arises regarding a leg sensor at a conceptual level is “what

kind of information we can get from leg,” followed by, “which information is important for

locomotion?” The answer can be categorized into the following three items:

• tactility — with simple capability to distinguish touch or no touch conditions or with

more advanced capability to detect different force or pressure levels on the contact

point or area. Large force or pressure on the leg typically indicates “ground contact”

condition, which specializes the tactility information as ground contact and ground

reaction force.

• leg actuation force — focusing on force generated internally as opposed to the previous

item focusing on force interaction with surroundings. Theoretically, these two are not

totally independent. This dependence is observed in the dynamic equations based on
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the physical system.

• leg state — including configuration and its derivative. Velocity state is comparably

less important than configuration if the mass/inertia of the legs is considerably smaller

than those at the body.

3.2 General Information about RHex’s Legs

After learning what kind of information we can obtain from a leg, the second question

is, “how to design a new leg with sensing capability or how to implement a sensor on the

current available leg to obtain the desired information?” Instead of the top-down method of

designing a new leg equipped with new sensing capability, we choose a bottom-up method

of implementing sensors with desired sensing information and minimal modification to the

currently available RHex legs. Our decision is based on the following two reasons: First,

to prevent changing the leg characteristics, especially the property of spring stiffness, in

order to preserve a similar dynamic response (which in turn maintains the robot’s dynamic

behavior). Second, to provide an opportunity to analyze the currently developed behaviors

with sensory information from a leg.

Before delving further into this topic, we first provide some background information

about RHex legs1. From the initial RHex version 0.2 to the latest version 1.7, RHex legs

have progressed through four generations—delrin leg, hard 4-bar leg, soft 4-bar leg, and half-

circle leg as shown in Figure 3.1. The main improvement from generation to generation is

demonstrated through properties of compliance, reliability, and simplicity. The feature of

compliance on legs acting as a passive spring is the key component for a robot to perform

dynamic behavior, while reliability and simplicity are for practical issues of robot assembly

and maintenance. The Delrin leg, composed of plastic delrin, a metal hip and a rubber foot,

was discarded long ago because of its low compliance and fragility. Both the hard and soft

4-bar legs designs based on the Daniel straight-line mechanism can be treated as a passive

1 DOF system where the compliance is generated by the deformation of two fiberglass

components on the internal 4-bar linkage mechanism. The only difference between these

two designs is in the two joints close to the hip in the internal 4-bar linkage—fixed joints

in the hard 4-bar and revolute joints in the soft 4-bar providing more motion flexibility. In

the latter case, the lower natural frequency of the robot excited by the motor shaft rotation

results in better dynamic locomotion. However, due to the complexity of assembly and

fragility in the fiberglass component, the 4-bar leg was soon replaced by the current design

of half-circle legs, which are composed of layers of fiberglass for compliance and bicycle tire

tread for traction. From the geometrical view, the half-circle leg is intuitively modeled as

the assembly of infinite torsional springs, each with an infinitesimal mass. This implies an

infinite DOF system. Nevertheless, it can be treated as a 2 DOF system under reasonable

1General RHex information is detailed in Section 2.2.
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Figure 3.1: Four different kinds of legs of RHex: (a) front view; (b) tilt view; (i) delrin leg;

(ii) hard 4-bar leg; (iii) soft 4-bar leg; (iv) half-circle leg

assumptions presented below. Though currently most researchers on the RHex project are

operating the robot with half-circle legs, the soft 4-bar legs still play an important role due

to its simple 1 DOF structure that results in easier modeling. Thus, both the soft 4-bar leg

and the half-circle leg are used in development of the leg sensor. The following illustration

focuses on the half-circle leg since it represents a more general case.

3.3 Concept of Leg Modeling

Understanding the desired leg information as well as the characteristics of RHex legs for

sensory implementation, the next procedure identifies “what kind of sensor and with how

much bandwidth for implementation.” The answer, however, is not straight forward and

strongly depends on how the legs are modeled, which is further dependent on the modeling

assumptions based on objective physical specifications or subjective observations. Unlike

simulation work, which requires modeling in a relatively high dimensional mathematical

space to achieve excellent accuracy, the physical operational robot requires a relatively

simpler model since it faces the tradeoff between limited signal bandwidth and desired

signal resolution under available realtime online computer resources.

In order to find the “optimized” model suitable for sensory implementation and to

discard minor issues in modeling, some assumptions are made as follows:

• no mass on the leg — The mass of the leg (4-bar leg: 100g; half-circle leg: 50g) is

comparably small to that of the body (∼ 8500g). Centrifugal force and Coriolis force

generated during leg rotation, due to small leg mass and inertia, are negligible at slow

leg rotation speeds especially when the legs are on the ground.
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• no damping on the leg — In the real world every mechanical system has damping2.

However, we are inevitably forced to impose this unrealistic assumption based on

the empirical difficulty of obtaining nonlinear coefficients of the damping model and

measuring the velocity state online. The validity of this assumption will be checked

in Section 3.7.2. The leg itself becomes an energy conservative system under this

assumption.

• infinite stiffness on the direction normal to the sagittal plane — Legs are designed

to allow deformation in the sagittal plane only. Note that in actuality, although the

stiffness in the direction normal to the sagittal plane is not infinite, it is much larger

compared to the two directions in the motion plane.

• point contact to the ground by foot only — Different contact points or multi-contact

points on the leg result in different “effective” legs which require different mappings in

each scenario. This assumption allows us to construct one “universal” model without

dealing with multi-model switching. In real experiments, the robot operating in gen-

eral walking and jogging gaits, with either the 4-bar leg or the half-circle leg, obeys

this assumption well. However, we observe a large contact region from recorded videos

by high speed cameras when the robot operates in high speed running gaits3. In this

case, one extra contact sensor is necessary for detecting the contact point in order to

perform multi-model switching.

Without loss of generality, the ideal half-circle leg shown in Figure 3.2(a) from a micro

perspective can be sectionalized and modeled as the assembly of infinite equal-mass and

inertia elements with equal-stiffness massless linear and torsional springs and equal-damping

massless linear and torsional dampers in between as shown in Figure 3.2(b). Suppose there

exist n small elements. Then this system has 6n DOF since each element has 3 DOF in

displacement and 3 DOF in orientation. The springs and dampers connecting to both ends

of each element, shown in detail in Figure 3.2(c), can be simplified by one pair of linear

spring and damper passing through the COM of this element, as well as one pair of torsional

spring and damper winding up through the COM. The general dynamic equations for each

element:

Mlẍl i + Dl( ˙xl i, xl i) + Kl(xl i) = fl i

Ir ¨xo i + Dr( ˙xo i, xo i) + Kr(xo i) = τr i

where xl i ∈ R3 , fl i ∈ R3

xo i ∈ R3 , τr i ∈ R3

i = 1, ..., n

(3.1)

2The existence of damping in the legs can be validated experimentally—after releasing the leg from a
compressed configuration, we observe both the 4-bar leg and the half-circle leg are back to rest length after
a few cycles of vibration. The stored potential energy is dissipated by damping in the leg.

3Only applicable when robot runs with the half-circle legs.
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Figure 3.2: Sketch of the half-circle leg model: (a) sketch of the original leg; (b) physical

leg model at a micro scale; (c) detail of each small element; (d) system without damper and

mass; (e) equivalent system to (d); (f) final model displayed in a particular linear case

where Ml, Dl, Kl are a 3 × 3 matrix of leg mass, leg damping and leg stiffness; fl i and

τr i are external forces and torque acting on the ith object accordingly; xl i and xo i are the

state of displacement and orientation of the ith object accordingly.

Based on the assumption of no mass or inertia and no damping in the leg, this model can

be simplified as an assembly of n linear springs shown in Figure 3.2(d) with 3n DOF, which

can actually be treated as a large 3-dimensional linear spring shown in Figure 3.2(e) since

the state between each pair of small springs is unimportant4. Adding the assumption of

plane deformation, the leg becomes a 2 DOF system which can be conceptually represented

in Figure 3.2(f) if the stiffness matrix is linear5. The original 6n DOF dynamic equation

reduces to a 2 DOF kinematic equation, i.e. the spring stiffness model:

K(x) = fext

where x ∈ R2, fext ∈ R2.
(3.2)

More specifically, consider a virtual clamp fixing the hip point. Then, x can be repre-

4This can be modeled as a 3 DOF torsional spring as well. There exists a fixed transformation between
these two representations.

5Only a system with a linear stiffness matrix can be represented as two orthogonal linear springs, and the
stiffness of these two springs are equal to the eigenvalues of the stiffness matrix. The matrix diagonalizing
the stiffness matrix indicates the angles between current axes and the principle axes of the system.
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sented as foot displacement in cartesian coordinate dC , including dy and dz; and fext can

be represented as a ground reaction force fG, including normal force fn, and friction force

ff . Equation (3.2) shows that one can find a direct map from leg configuration, dC , (in

the displacement field D) to the ground reaction force fG, (in the force field F) without

involving any other variables. This further suggests a quasi-static relationship—the work

from all external forces and moments contributes to potential energy only, not to inertial

and damping forces.

The resulting 2 DOF kinematic equation shown in (3.2) leads to the conclusion that the

half-circle leg can be well approximated as a 2 DOF system, which further suggests sufficiency

of two independent sensor channels measuring in either field, x or fext, to recover both leg

configuration and ground reaction force with known stiffness matrix, K. Following a similar

logic, the 4-bar leg can be modeled as a 1 DOF system without any extra assumptions.

Combining the previous conclusion with the available information from the leg detailed

in Section 3.1, we begin searching for a suitable sensor with 2 independent channels to derive

the desired information. After surveying suitable commercial sensors in both displacement

field and force field for installation with minimal modification on the current soft 4-bar leg

and the half-circle leg, the strain gauge is the final selection because of its precise measure-

ment of strain, compact package size, and easy installation. Though strain is categorized as

a property of the displacement field, it is widely used as the basic component for most force

sensors (load cell) on the market, by means of performing a precise linear mapping from

the displacement field to the force field by a special design of the deformation mechanism

under particular geometry shape. Therefore, in the first stage we believe that installing

strain gauges with a precise known model allows us to extract correct leg information in

both displacement and force fields. Theoretically, the number of independent-working strain

gauges should be equal to the degree of freedom of leg for mapping and modeling work.

Consequently, in our first experimental trial one and two strain gauges are installed on the

soft 4-bar leg and the half-circular leg as shown in Figure 3.3.

Within two strain gauges, ε1 and ε2, installed on the half-circle leg shown in Figure

3.4(a), there exist three different fields for mapping and modeling—the force field F ; the
displacement field D; and the strain field S. We are interested in three mappings: First,

MSD : S → D shown in Figure 3.4(c); second MSF : S → F which relate the strain

data to the leg configuration or foot displacement, dy and dz; and third, strain data to the

ground reaction forces, ff and fn shown in Figure 3.4(d). Furthermore, inserting known

ground reaction forces into three equilibrium equations within planar motion, two force

equations and one moment equation shown in (3.3) yields the motor torque τm, along with

the remaining two unknowns—reaction forces from motor shaft fr y, and fr z shown in

Figure 3.4(d). The touchdown information can be derived simply by setting a threshold in

either the configuration model or force model, or may be detected from raw strain output

as shown in Figure 3.4(b). Thus, two strain gauges are sufficient to provide most of the
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Figure 3.3: Photos of the RHex legs with strain gauges: (a) 4-bar leg; (b) half-circle leg
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Figure 3.4: Available information on the half-circle leg with implementation of strain gauges:

(a) leg at rest position with two strain gauges; (b) touchdown information; (c) leg configu-

ration information; (d) ground reaction forces and motor torque information

desired information from the leg detailed in Section 3.1.

∑

Fy = 0;
∑

Fz = 0;
∑

Mo = 0 (3.3)

[

dy

dz

]

=MSD(

[

ε1

ε2

]

) (3.4)

[

ff

fn

]

=MSF (

[

ε1

ε2

]

) (3.5)

For the 4-bar leg equipped with only one strain gauge, we are able to extract leg config-

uration but not ground reaction force and motor torque. One strain gauge can only provide

one force data in the direction of leg compliance which is the resultant coupled force of
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normal and friction forces. Unable to decouple them, we also lose the ability to get further

motor torque information. There is the option of designing another independent working

small deformation area in order to install a second strain gauge. However, that would

become a time-consuming subproject as well as defeat the goal of minimal modification.

Consequently, touchdown and leg configuration are the only concern for the 4-bar leg at its

current stage. The mapping MSD : S → D is similar to that of the half-circle leg but in 1

dimension.

This approach utilizes the leg as a pure input-output system, and during the model

process we adopt a data driven model without exploring the analytical model of the system.

The analytical model for the compliant members together with the free body diagram may

also yield desired mapping; however, we prefer to use data-driven approach due to the

following reasons: First, the compliant members made by fiber glass don’t have properties

of isentropic, especially for those custom-layered fiberglass, so we have a hard time to find

a suitable analytical model for this case; second, it is still necessary to build a device to test

the performance of this analytical model; thus, we prefer to directly use this device to find

the data-driven model.

One of the direct applications of this kind of leg sensory system in a robot is ground

compliance identification. During locomotion the pattern of the leg configuration or the

ground reaction force is also affected by the ground compliance in addition to leg spring

stiffness and body/leg mass. In this case we can expect different patterns of the leg con-

figuration or the ground reaction force versus time, and these patterns can be recognized

into different categories for identification. Appendix B describes some initial results in this

research direction.

3.4 Benchtop Experimental Apparatus

A benchtop experimental apparatus [Lin05] shown in Figure 3.5 was utilized for collect-

ing quasi-static leg data from various applied force, displacement and strain fields. This

apparatus was built in order to perform modeling work on both RHex 4-bar and half-circle

legs. Figure 3.6(a) sketches the kinematic parts of the apparatus. In this 2-dimensional

setup, the “hip” of the leg is rigidly mounted at the origin of the setup, fixing both its

position and orientation such that the polar coordinate clamp frame C coincides with the

table plane, and at rest the foot vector points vertically downward. The virtual ground

is a horizontal line passing through the foot which is attached to a foot clamp with free

rotational motion. The foot clamp is mounted on a force sensor, which is secured on top

of the linear slider mounted on the turntable. The foot can move freely in a 2 DOF polar

coordinate frame centered at the origin. The position of the foot, dP , in the polar coordi-

nate clamp frame C, is measured by a linear potentiometer (Midori LP-50F) and a rotary

potentiometer (Midori CPP-35B) along these two sliders. A 3-axis force sensor (Bokam
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Figure 3.5: Photos of benchtop experimental apparatus: (a) experiment area; (b) benchtop

experimental apparatus
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Figure 3.6: Sketches of benchtop experimental apparatus: (a) kinematic diagram; (b) sensor

signal flow

DX-480) measures the force at the foot simulating the ground reaction force fG. Figure

3.6(b) illustrates the leg configuration variables on the deformed leg attached to the setup,

and on the right, a simple block diagram of the acquisition system is depicted.

Acquisition of the apparatus data is performed by a PC/104 stack containing: 1) Lippert

Automationstechnik S-104P-CRR2-VEPS300 PC104 300 MHz CPU board with 256MB

33



RAM and 512MB compact flash running QNX6.0 real-time operation system; 2) Micro/Sys

MPC550 12-bit AD converter board; 3) Real Time Device EPWR104-HR25, 25W PC104

5V/12V power supply; 4) VersaLogic PCM-3115 PC104 PCMCIA adapter with Avaya

128RC4 wireless Ethernet; and 5) a custom built interface board.

Sensors are sampled at 1KHz while the position of the foot is manually manipulated at

slow speeds. Sensor data, including the strain of the leg after amplification by a Wheatstone

Bridge, ε1 and/or ε2, measuring how much the leg deforms, the foot position in the clamp

frame dP ∈ C, and the force at the foot fG ∈ C, simulating the ground reaction force acting

on the foot, are filtered by a low pass filter with a cut-off frequency of 20Hz to eliminate

high frequency sensor noise. The resultant data is stored in the on-board compact flash for

off-line fitting studies.

3.5 High Speed Measurement of Leg Configuration

In order to evaluate the performance of the leg configuration model in real robot oper-

ation, we prepared an experimental “ground truth” measurement system utilizing a high

speed camera to record kinematic configuration of the robot leg during realistic robot op-

erating conditions.

Figure 3.7 illustrates the experimental setup where the robot walks along a 2× 1 meter

runway. A high speed black-and-white analog camera (RadLake HR-1000) is located 1 meter

away from the path viewing the robot in the sagittal plane at 125 frames per second. In order

to simplify offline analysis of the visual data, the runway and its background as well as the

frame of robot are all covered with black mat card board. In these experiments we focused

on the middle leg on the camera side which is instrumented with a LegNet LegModule

providing strain gauge measurements at 6-bit resolution at 333Hz. Two reflective markers

made by 3M tape are placed on the leg: 1) a 10× 10 mm square reflective piece at the foot;

and 2) a 100× 10 mm rectangular piece extending from the hip attachment point towards

the foot position in rest, pointing the rest configuration, φ = 0. A low power halogen lamp

is located near the camera to illuminate the scene. In order to synchronize the strain data

collected on the robot with the visual data recorded by the camera, the robot is fitted with

a set of LEDs that turn on when the strain logging is initiated on the robot.

An experiment starts with the robot placed at the beginning of the runway in standing

pose ready to walk. Visual recording is initiated first followed by the activation of the logger

on the robot. As soon as the LEDs on the robot indicate the start of the logging of strain,

the user commands the robot to walk until it gets out of the camera view.

Recorded video is converted into a sequence of frames. Starting from the frame where

the LEDs are on for the first time the frame sequence is fed to a MATLAB script. Each

gray-scale frame is converted to black-and-white by setting a threshold and the objects in

the image are distinguished from each other by using a connected components algorithm.
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Figure 3.7: High speed sagittal plane ground truth experimental test station

The two markers, the foot and the ruler, are identified based on their geometric properties.

The effective leg length, l, is the distance from the top of the ruler marker to the center of

the foot marker and the deflection angle, φ, is the angle between the major axis of the ruler

marker and the line connecting the top of the ruler to the center of the foot. These two

variables represent the leg configuration in a polar coordinate system. Note that both the

resulting visual measurements and the strain measurements recorded on the robot start at

the same instant since they are synchronized by the activation of an LED.

3.6 4-Bar Leg Modeling and Evaluation

The 4-bar leg is chosen as our first trial for modeling and evaluation as well as testing

the performance of the strain gauges due to its simple 1 DOF structure.

3.6.1 The 4-Bar Leg

The RHex soft 4-bar leg [Moo01] depicted in Figure 3.8 is a passive mechanical system

composed of four parts: a hip clamp, front and rear compliant members, and a shin. The

compliant members are thin rectangular fiberglass (S-glass6) strips that are rigidly fixed at

one end to the shin and connected to the hip clamp at the opposite end by a revolute joint

or hinge, creating a 4-bar linkage structure on a plane which will be referred to as the “leg

plane” and denoted by L = R2. The hip clamp rigidly attaches this leg structure to the

hip motor shaft such that the shaft axis is normal to the leg plane L, and goes through its

origin.

In this particular arrangement the compliant parts are flexible in directions within the

leg plane L, but “infinitely” stiff in other directions for all practical purposes as our assump-

6Manufactured by Kinetic Composites, INC, http://www.kcinc.com/
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Figure 3.8: The 4-bar leg: (a) RHex with the 4-bar legs standing up in a natural setting;

(b) key components of the 4-bar leg

tions. Combined with the constraints imposed by the closed chain mechanism the entire

leg structure remains in the leg plane L, for all times. Because the locus of physically valid

leg configurations obtained empirically by the benchtop experimental apparatus detailed in

Section 3.4 is a very thin set within the 2-dimensional leg plane L, we have adopted the

simplifying assumption that each leg is effectively a 1 DOF mechanism, and we develop a

scalar nonlinear representation of the function relating strain to configuration accordingly.

We choose to utilize the strain across rear compliant part, ε ∈ S := R+, for computing

the configuration of this 1 DOF leg. A strain gauge (Vishay EA-250BK-10C) is installed

near the hinge connecting the rear compliant part to the hip clamp where the strain ε, is

the smallest. In our empirical studies the maximum strain measured during tripod walking

gait is approximately 1000 micro strain which falls within the 106 cycle at 1500 micro strain

range reported in the strain gauge specifications7.

3.6.2 Configuration Model

Figure 3.9 shows a kinematic sketch of the 4-bar leg mounted to a motor shaft on the

body defined in body frame B, as well as defines basic leg configuration variables. Let

C := R+ × S1 be a polar coordinate system in the leg plane L, attached to the hip clamp,

whose states are the distance between the hip attachment point and the foot, l ∈ R+, or
“the effective leg length”; and the angular deflection from the rest position of the foot,

φ ∈ S1, as depicted in Figure 3.9(b). Though these two variables seem to construct the 2

DOF polar coordinate centered at the hip, the actual foot locus depicted with a dashed line

7At a typical walking speed, the legs recirculate at roughly 2 Hz, hence we should expect mechanical
sensor failures at a specified leg every 5 x 105 sec, hence, with six operating simultaneously, at some leg
every 8 x 104 sec. Thus, at a typical a cruising speed of 1 m/s, we would expect to travel 80 km before
suffering a leg sensor failure.
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Figure 3.9: Kinematic sketches of the 4-bar leg: (a) at rest; (b) during compression

is an approximate 1 DOF curve. We introduce a memoryless system model for the 4-bar

leg configuration relating the strain measurements across the rear compliant part, ε ∈ S, to
the displacement of the foot with respect to the hip attachment point, dP ∈ C, which is a

representation of the leg configuration.

Considering a quasi-static setting we ignore damping and leg mass as in our assumptions

detailed in Section 3.3 and model the 4-bar leg as a pure passive spring attached to the hip

clamp with torsional and radial compliance. The locus of the physically valid foot positions

for the 4-bar leg, presented in Section 3.6.3, lies in a very thin set suggesting a 1 DOF

operating regime for this mechanism allowing us to represent the leg configuration dP , as a

function of the scalar strain measurement, ε, given by a Taylor function,MSD 4Bar : S → C,

dP =

[

l

φ

]

=MSD 4Bar(ε) :=









N
∑

i=0

[

piε
i
]

N
∑

i=0

[

qiε
i
]









(3.6)

where the length coefficients, {pi|i = 0, ..., N}, and deflection coefficients, {qi|i = 0, ..., N},
are computed by the fitting studies detailed in Section 3.6.3.

3.6.3 Fitting Study

Before proceeding with the system identification computations it is necessary to clean

up the raw benchtop data which is generated by manual manipulation of the 4-bar leg.

Note that the resulting leg configurations at the sampling instants shown in Figure 3.10(a)

are distributed unevenly over the leg plane, L, where the axes of the plots are the cartesian
displacement of the foot point, (dy, dz), from the rest position which is indicated by the
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Table 3.1: Performance of the Polynomial Configuration Models of the 4-Bar Leg
Model Fit Cross Validation

Order fNRMSE(l, l̂) fNRMSE(φ, φ̂) fNRMSE(l, l̂) fNRMSE(φ, φ̂)

1 1.12% 4.87% 1.20% 5.44%

2 1.11% 4.79% 1.16% 5.51%

3 1.05% 4.53% 1.11% 5.19%

4 1.05% 4.43% 1.11% 5.26%

solid dot. As a first step, we obtain a uniformly distributed set of data by averaging out the

original raw data and resampling it over a uniform grid of points over the original region

as seen in Figure 3.10(b).

The second step chooses “physically relevant” points from the uniform data that cor-

respond to ground contact with no slippage characterized by two constraints: 1) positive

normal component of ground reaction force, fn > 0 with maximum allowable force threshold

shown in Figure 3.10(c); and 2) friction force acting on the ground, tangent component of

the ground reaction force, is less than the maximum static frictional force, ff < fs shown

in Figure 3.10(d). The maximum static frictional force is given by fs = µsfn where µs is

the coefficient of static friction which is empirically measured to be 0.65 for the 4-bar legs

over card board.

The coefficients of the leg model in (3.6) are computed by fitting the resulting physi-

cally relevant uniformly distributed data set shown in Figure 3.10(d) by a root mean squared

(RMS) method. Letting d̂ denote the model prediction for a stream of N physical measure-

ments, d = (d1, ..., dN ), taken from a leg, where di denotes either length li, or deflection

φi, we measure model performance by the percentage normalized RMS error, fNRMSE(d, d̂),

between the original data, d, and the corresponding model output, d̂, given by

fNRMSE(d, d̂) :=
1

dmax

√

(
∣

∣

∣

∣

∣

∣
d− d̂

∣

∣

∣

∣

∣

∣

2

2
/N)× 100 (3.7)

where N is the length of the data vectors and dmax is the maximum value in original data.

Table 3.1 reports fitting and cross validation8 performances by normalized RMS error for

the leg model in (3.6) with different polynomial order, N . Small values indicate successful

model prediction. Since the improvement in model performance is insignificant for quadratic

and higher order polynomials, we choose to use the linear model due to its simplicity. Figure

3.11 presents the resulting linear fits for the leg length l, and deflection angle φ, respectively.

8This term denotes our simple estimates of the predictive accuracy of these models, as follows. In each
data set we selected at random a small amount of data (typically 20% of the available input output pairs)
for use as a cross validation test population. The models were fit to the 80% unselected population and then
used to “predict” the input output relationships within the test population.
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Figure 3.10: Scatter-plots of foot positions of the 4-bar leg: (a) raw data; (b) uniformly

distributed data; (c) data with suitable normal ground reaction force; and (d) final physical

relevant points

3.6.4 Evaluation of the Configuration Mode

In order to assess the performance of the kinematic leg model in (3.6) under realistic

operating conditions we ran a set of experiments where the output of the model is compared

against the leg configuration as measured by a visual test station described in Section 3.5.

Figure 3.12 shows plots of visually measured leg configuration states and the leg model

output for five runs. The model performance evaluated by percentage RMS error for the
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Figure 3.11: Linear configuration model of the 4-bar leg: (a) leg length model; (b) leg

deflection angle model with physically relevant data (unit: l cm ; φ deg ; “ε” unitless)

Table 3.2: Performance of Configuration Model of the 4-Bar Leg via Experimental Verifi-

cation
Speed 0.2 m/sec 0.45 m/sec

fNRMSE(l, l̂) fNRMSE(φ, φ̂) fNRMSE(l, l̂) fNRMSE(φ, φ̂)

Exp #1 1.29% 10.34% 1.25% 15.00%

Exp #2 1.19% 7.77% 1.11% 16.95%

Exp #3 1.29% 8.77% 1.12% 12.01%

Exp #4 1.14% 6.38% 1.11% 12.97%

Exp #5 1.29% 8.89% 1.23% 9.61%

same plots can be found in Table 3.2. We observe very small errors in effective length

l, which remains less than 2% of the rest length independent of the walking speed. The

deflection angle errors seems to grow as the speed increases with an apparent upper bound

at 17%. Although the percentage error in deflection angle φ, is not small, its absolute value,

below 5 degrees, turns out to have a negligible adverse effect upon the pose estimator, as

reported in Chapter 4.

3.7 Half-Circle Leg Modeling and Evaluation

With the experience of a configuration model for the 4-bar leg, the half-circle leg is now

investigated for its configuration model and ground reaction force model, which represents

a more general leg sensory system.
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Figure 3.12: Plots of performance of 4-bar leg configuration model: comparison of visually

measured (solid line) and leg model generated (dashed line) leg states at 0.2 m/sec (left) and

0.45 m/sec (right). Plots from five runs for the effective leg length l, (top) and deflection

angle φ, (bottom) at provided. Rows are ordered according to the experiment number to

match with Table 3.2. (unit: l cm ; φ deg ; t sec)

3.7.1 The Half-Circle Leg

Unlike the 4-bar leg’s complex structure, the half-circle leg, a passive 2 DOF mechanical

system, is composed of a hip clamp, a fiberglass leg and a section of bicycle tire tread. The

simple design improves robustness of the leg during robot locomotion, and softer compliance

in the legs results in the whole robot system performing closer to the natural frequency of

the virtual “spring loaded inverted pendulum (SLIP)” resulting in a better tractable and

dynamical behavior. However, this higher DOF system results in more complex modeling

and requires more sensor channels installed on the leg to achieve the same task.

Following the terminology and concept from the 4-bar leg, the leg plane L = R2 is also
defined as the plane of 2 DOF motion, the sagittal plane. The hip clamp secures the leg

structure to the hip motor shaft such that the shaft axis is normal to the leg plane L,
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and goes through its origin. The displacement of the foot can be represented in cartesian

coordinates dC , including dy and dx, as shown in (3.4); or in polar coordinates dP , including

l and φ following the modeling concept from the 4-bar leg shown in (3.6)(a).

3.7.2 Internal Stiffness Model

Though the internal stiffness model, mapping from the displacement field to the force

fieldMDF : D → F shown in (3.8), is not for sensory purposes like the other two mappings

shown in (3.4) and (3.5). Instaed, it acts as a check point to evaluate whether the leg

itself qualifies as an energy conservative system derived from energy potential in a specific

operating region suitable for our case. This further determines the validity of our assumption

of the leg being a 2 DOF system as detailed in Section 3.3. Therefore, it is worthwhile to

evaluate the performance of this stiffness model before going deeper into the other two

models related to the sensory system.

[

ff

fn

]

=MDF (

[

dy

dz

]

) (3.8)

Generally speaking, an energy conservative system can be described by a time-invariant

potential energy function, φe ∈ E , in energy field, depending only on position x, and force

f , relating to energy function by

f = −∇φe (3.9)

which indicates a coupling in parameters for systems greater than 1 DOF (Cauchy-Riemann

Condition). Based on these characteristics, we can model the system with and without the

constraints of this condition to check if the model performs similarly. If the result is positive,

then the system is energy conservative.

Two-variable polynomial functions from order 2 to order 5 in energy space shown in

(3.10) are chosen as the modeling function for the overall research of the half-circle leg for

its simplicity, which is equivalent to the polynomial model from order 1 to order 4 in force

space.

φe 2 all =
2
∑

i=0
φe i = φe 0 + φe 1 + φe 2

φe 3 all =
3
∑

i=0
φe i = φe 0 + φe 1 + φe 2 + φe 3

φe 4 all =
4
∑

i=0
φe i = φe 0 + φe 1 + φe 2 + φe 3 + φe 4

φe 5 all =
5
∑

i=0
φe i = φe 0 + φe 1 + φe 2 + φe 3 + φe 4 + φe 5

(3.10)

where
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φe 0 = k0

φe 1 = k11x1 + k12x2

φe 2 = k21x1
2 + k22x2

2 + k23x1x2

φe 3 = k31x1
3 + k32x2

3 + k33x1
2x2 + k34x1x2

2

φe 4 = k41x1
4 + k42x2

4 + k43x1
3x2 + k44x1x2

3 + k45x1
2x2

2

φe 5 = k51x1
5 + k52x2

5 + k53x1
4x2 + k54x1x2

4 + k55x1
3x2

2 + k56x1
2x2

3

(3.11)

where [x1x2]
T is a 2-dimensional displacement vector, equal to

[

dy dz

]T
in cartesian

coordinates or
[

l φ
]T

in polar coordinates if specialized to the leg case. The constant

term k0 can be set to “0” since it represents the relative level of energy.

The stiffness mapping function MDF in this specific case can be derived by applying

(3.10) into (3.9). Below is an example of a mapping function in quadratic form from a 3rd

order energy function:

[

ff

fn

]

=

[

k11

k12

]

+

[

2k21 k23

k23 2k22

][

dy

dz

]

+

[

3k31 k34

k33 3k32

][

dy
2

dz
2

]

+

[

2k33

2k34

]

dydz

or, fG = KConstant +KLinear

[

dy

dz

]

+KQuadratic

[

dy
2

dz
2

]

+KQCoupledydz

(3.12)

where the coefficients kij in the matrices can be represented by “stiffness matrices” with

different orders: KConstant, KLinear, KQuadratic, and KQCouple. Ideally, no constant term

k11, k12, in the model should exist because no force exists when the leg is at “rest position”

if the leg acts like a spring. However, in practical modeling work we preserve these constant

terms to compensate the small inevitable toe clamping force when the leg is at rest position

due to imperfect settings. From (3.12) it is easy to observe the existence of a relation

between the parameters in the stiffness matrices, for example, the off-diagonal terms of

KLinear are equal. This is due to the assumption of the existing energy function which

preserves the property of energy conservation. In the following modeling work we will

compare the performance of this model to the “no-constraint” one which break any relation

between parameters. For example, in the same quadratic force model, the no-constraint

case will have 12 parameters, two in the constant term, four in the linear term, four in the

quadratic term, and two in quadratic coupling term, compared to 9 in (3.12).

Table 3.3 shows the results of model performance under various assumed orders of the

polynomials and various constraints in the parameters. The RMS error reduces as the order

of the polynomial increases since the increase of the parameter space adds more room to

adjust the model to the data. Small RMS error indicates that there indeed exists the two-to-

two mapping between displacement field and force field, which further suggests the DOF of
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Table 3.3: Performance of the Internal Stiffness Model for the Half-Circle Leg
Index Model Type L LQ LC LQC LQCQ

Model Root Mean Square Error

(a) Normal 0.8214 0.2951 0.3501 0.2529 0.2467

(b) with Constant 0.8117 0.2777 0.3317 0.2463 0.2445

(c) with Cauchy-Riemann 0.8501 0.3991 0.4189 0.3364 0.3091

(d) with Constant Cauchy-Riemann 0.8120 0.3063 0.4005 0.2797 0.2771

Cross Evaluation Root Mean Square Error

(a) Normal 1.0024 0.3283 0.4135 0.2669 0.2676

(b) with Constant 0.9866 0.3113 0.3940 0.2637 0.2668

(c) with Cauchy-Riemann 1.0606 0.4269 0.4811 0.3502 0.3316

(d) with Constant Cauchy-Riemann 0.9866 0.3424 0.4753 0.2952 0.2977

the half-circle leg is two. Comparing (b) and (d) to check the effect of the Cauchy-Riemann

condition, small changes in RMS error indicate that the model itself satisfies the condition,

which proves that the leg model can be approximated as an energy conservative system in

our quasi-static operating region. As a result, we can ignore the damping effect on the leg

modeling. In comparing (a) to (b) and (c) to (d), it is clear that the constant terms adjust

the model to compensate the offset, a affine model, by the empirical clamping force error.

However, small changes also indicate that the error due to clamping is minimal.

3.7.3 Configuration Model

The mathematical structure of the configuration model for the half-circle leg mapping

from strain field to displacement field MSD : S → D shown in (3.13) is similar to that

of the internal stiffness model shown in Section 3.7.2. Since the half-circle leg is a 2 DOF

system, we use two strain gauges as input variables for the model mapping:

[

dy

dz

]

=MSD(

[

ε1

ε2

]

) =

[

fSD 1(ε1, ε2)

fSD 2(ε1, ε2)

]

. (3.13)

The data fitting procedure is similar to that for the 4-bar leg detailed in Section 3.6.3;

raw data is needed to be meshed into the uniform grid as well as to be filtered to physically

relevant points shown in Figure 3.13. The distribution of the final physically relevant data

points9 indicates that the half-circle leg performs “wind-up” deformation during the robot

locomotion, and this wind-up motion stores potential energy from displacements in both

radial and tangential directions in the sagittal plane.

Performance of the polynomial models in different orders for estimating configuration

from strain data of the half-circle leg is shown in Table 3.4. The suitable model to use is

shown in (b) since: (1) Unlike the internal stiffness model derived from the energy function

9The leg orientation can be checked by the kinematic sketch of the benchtop experiment apparatus shown
in Figure 3.6.
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Figure 3.13: Scatter-plots of the foot positions of the half-circle leg: (a) raw data; (b)

uniformly distributed data; (c) data with suitable normal ground reaction force; and (d)

final physical relevant points (unit: mm)

resulting in the Cauchy-Riemann condition, this model has totally independent parameters.

Rows (c) and (d) shows the effect of unsuitable constraints. (2) The output of strain gauges

shows nonzero value in the natural leg configuration without deformation. Rows (a) and

(c) shows the effect of the lack of the constant term. This table also indicates that the

linear-quadratic (LQ) model yields a low RMS error in a minimal set of parameters and is

the suitable model. Notice that the cross evaluation error on the LQ model is also less than

10%.
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Table 3.4: Performance of the Polynomial Configuration Models for the Half-Circle Leg
Index Model Type L LQ LC LQC LQCQ

Model Root Mean Square Error

(a) Normal 5.9191 0.6868 0.8983 0.4168 0.3991

(b) with Constant 1.0662 0.4196 0.4187 0.4150 0.3990

(c) with Cauchy-Riemann 6.0134 1.0723 1.2067 0.8847 0.8722

(d) with Constant Cauchy-Riemann 1.3604 0.9024 0.8855 0.8843 0.8709

Cross Evaluation Root Mean Square Error

(a) Normal 6.2299 0.7317 0.9745 0.4543 0.4906

(b) with Constant 1.1853 0.4419 0.4549 0.4485 0.4909

(c) with Cauchy-Riemann 6.3315 1.1411 1.3001 0.9313 0.9504

(d) with Constant Cauchy-Riemann 1.5452 0.9427 0.9298 0.9302 0.9520

Another necessary step before importing the model into real robot operation is to check

the independency of the variables. To this end, we use the Jacobian matrix of the model

shown in (3.14) to construct a 2-norm condition number, the ratio of the largest singular

value to the smallest one of the matrix. Large condition numbers indicate a nearly singular

matrix, which also means non independency. Figure 3.14 shows the condition number over

the whole domain, where the dash-dot line indicates the boundary of reasonable robot

operation domain. A condition number ranging from 2 to 6 inside this domain indicates

good independency in this LQ model.

Jacob(ε1, ε2) =

[

fSD 1(ε1,ε2)
∂ε1

fSD 1(ε1,ε2)
∂ε2

fSD 2(ε1,ε2)
∂ε1

fSD 2(ε1,ε2)
∂ε2

]

(3.14)

3.7.4 Ground Reaction Force Model

The procedure of the ground reaction force model for the half-circle leg mapping from

strain space to force spaceMSF : S → F shown in (3.5) is similar to that of the configuration

model detailed in Section 3.7.3. After the same data filtering process, the performance of

the ground reaction force model is shown in Table 3.5, while the condition number with the

robot operation domain is shown in Figure 3.15. From the table row (b), the LQ model is

again the best fitting model. The condition number is also within the range of 2 to 6.

From intuition we may get the wrong impression that the requirement for a successful

mapping from the strain field to the displacement field is less than that to the force field since

strain and displacement are in the same “field”, though we use the similar simple model in

both case. In truth, these two require the same strict assumptions detailed in Section 3.3.

Strain measured from a strain gauge can be considered as a “localized displacement” at a

specific point. The fundamental reason why we can use these two localized displacements to

estimate the overall displacements is the existence of a spring effect on the whole leg, which

mandatorily deforms the leg within a minimal energy requirement, also the “equilibrium”
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Figure 3.14: Condition number of the configuration model of the half-circle leg. The units

of the axes “ε” are represented by voltage—larger voltage indicates smaller strain; nominal

voltage located between 2.6 ∼ 2.8

Table 3.5: Performance of the Ground Reaction Force Models for the Half-Circle Leg
Index Model Type L LQ LC LQC LQCQ

Model Root Mean Square Error

(a) Normal 0.7689 0.0827 0.1077 0.0566 0.0561

(b) with Constant 0.1022 0.0570 0.0570 0.0563 0.0561

(c) with Cauchy-Riemann 1.0872 0.3427 0.3888 0.2868 0.2852

(d) with Constant Cauchy-Riemann 0.2940 0.2882 0.2866 0.2856 0.2850

Cross Evaluation Root Mean Square Error

(a) Normal 0.8001 0.1051 0.1347 0.0694 0.0694

(b) with Constant 0.1272 0.0688 0.0699 0.0704 0.0692

(c) with Cauchy-Riemann 1.1932 0.3851 0.4552 0.29200 0.2907

(d) with Constant Cauchy-Riemann 0.3036 0.2953 0.2944 0.2918 0.2899

state. Without the spring effect, there is an infinite number of deformed configurations

within a given specific foot displacement. For example, suppose the leg is made of a section

of bike chain—fixing the relative location of both ends does not give any information about

the configuration of the middle chains. On the other hand, knowing the relationship between

two randomly chosen links does not reveal any information about the relative locations of

the end points. However, this spring effect not only relates the displacement to the force

but also brings the damping effect and inertia into consideration based on the principle of
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Figure 3.15: Condition number of the ground reaction force model of the half-circle leg. The

units of the axes “ε” are represented by voltage—larger voltage indicates smaller strain;

nominal voltage located between 2.6 ∼ 2.8

the dynamic equation. Therefore, in order to simplify the equation shown in (3.1) to the

fixed force-displacement relationship shown in (3.2), a few strict assumptions are required,

like no mass, damping, or quasi-static operation region, as detailed in Section 3.3.

3.7.5 Evaluation of the Configuration and the Ground Reaction Force

Model

The procedure to evaluate a 2 DOF quadratic configuration model for the half-circle

leg is similar to that of the linear configuration model for the 4-bar leg. This is done

by comparing the leg configuration from the modeling output of the leg sensor to the

measurements of the virtual ground truth system using the same setup illustrated in Section

3.6.4 and shown in Figure 3.7. Evaluating the ground reaction force model can be achieved

by a similar procedure in which the virtual ground truth system is replaced by a force plate

to measure the force between foot and the ground detailed in Appendix C.

The evaluation of the models of the half-circle leg and its applications are beyond the

scope of this dissertation. Our focus in the next chapter moves onto the information of the

leg configuration of the 4-bar leg and its applications.
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CHAPTER 4

Body Pose Estimation by Leg Sensor

This chapter introduces a computational algorithm for continuous measurement of full

body pose for a hexapod robot utilizing the 4-bar leg configuration sensor introduced in

Chapter 3. We will focus on an alternating tripod walking gait because of its familiarity

and importance in RHex. The computations presented below generalize to a family of

gaits characterized by two conditions: A) the body is supported by at least three legs with

non-collinear toes at any given time; and B) ground contact legs have no toe slippage1.

Section 4.1 introduces the algorithm of body pose estimation, including the within stride

body pose detailed in Section 4.1.1, odometry via sequential composition in Section 4.1.2,

and a short discussion in Section 4.1.3. In Section 4.3 we evaluate the performance of this

algorithm at widely varying body speeds in Section 4.3.1 and over dramatically different

ground conditions in Section 4.3.2 by means of a 6 DOF vision-based ground truth measure-

ment system (GTMS) detailed in Section 4.2. We also compare the odometry performance

to that of sensorless schemes, both on legged as well as on a wheeled version of the robot, us-

ing GTMS measurements of elapsed distance in Section 4.3.3, followed by a short discussion

in Section 4.4.

4.1 Computation of Body Pose

In an alternating tripod walking gait we identify two intervals: the single stance phase2

and the double stance phase when all legs are in ground contact as depicted in Figure 4.1.

This suggests a hierarchically structured algorithm with two levels:

1. A low level, discussed in Section 4.1.1, operating during individual single stance

phases, computing the body pose in a locally defined coordinate system. We will

1These conditions guarantee that the toe contacts yield a well defined coordinate system fixed in the
world frame. Appropriate generalizations of the calculations would extend the computation of full body
pose to other kinds of legged robots, like quadrupeds or even bipeds with foot or surface contact.

2Single Stance Phase denotes the instance when the body is supported by only one tripod where the
three toes of the front and rear ipsilateral legs and the middle contralateral leg of a tripod are all in contact
with the ground, as depicted in Figure 4.1(a).
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(a) (b)

Figure 4.1: Two types of stances of RHex in a tripod walking gait: (a) single stance

phase(left tripod: blue dashed; right tripod: green dotted) ; double stance phase

call the tripod coordinate system T, rigidly related to the world coordinate systemW.

2. A high level sequence of compositions, described in Section 4.1.2, relating the tripod

coordinate systems in consecutive single stance phases to evaluate the body pose with

respect to the world coordinate system, W.

4.1.1 Pose Computation during Single Stance

Assume a leg model si(zi), where zi denotes the sensory measurements available regard-

ing the configuration of the kinematic chain connecting the robot body COM to the ith

toe and si represents the point of toe contact with respect to the robot body coordinate

system B. For example, in the RHex implementation, zi consists of two mappings—first,

the kinematic mapping relating the ith hip clamp coordinate system Ci, to the body co-

ordinate system B, by a rigid transformation NCiB(θi) : Ci → B, which is parameterized

by the angular position of hip shaft θi; second, another kinematic mapping relating the

strain across the compliant portion of the leg as read from the sensor suite εij , to the leg

configuration in the clamp coordinate system, by a numerical modeling MSD i, detailed in

Chapter 3—yielding the equation:

si(θi, εij) = NCiB(θi) ◦MSD i(εij) (4.1)

where i = 1, 2, ..., 6 denotes the index of the leg and j represents the index of the strain

reading in each leg, j = 1 for the 4-bar leg; j = 1, 2 for the half-circle leg.

Without loss of generality, consider the case of a single left tripod stance shown in Figure

4.2. With the definition of the support triangle S, whose vertices are identified with the

non-collinear toes of the ground contact legs, we can derive the unit vectors along the two

edges of the support triangle S, that intersect at s3 as
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Figure 4.2: Sketch of RHex in left-tripod stance together with associated terminologies

e1 :=
s5−s3

||s5−s3||2
e2 :=

s1−s3
||s1−s3||2

.

Now define the tripod coordinate system T, with origin at s3 and orthonormal basis derived

by Gram-Schmidt Orthogonalization as

t1 :=
e1−(tT2 e1)t2

||e1−(tT2 e1)t2||2
t2 := e2 t3 := t1 × t2

represented in the body coordinate system B. Then a rigid transformation NBT , relates
points pB , expressed in the body coordinate system B, to points expressed in the tripod

coordinate system T, by

NBT(pB) := MBT (pB − s3) (4.2)

where MBT :=
[

t1 t2 t3

]T
(rotation matrix).

Equation (4.2) contains 6 DOF within stride body pose information [Pau83]. The COM

displacement with respect to current tripod coordinate system T, is read off as −MBTs3,

where the third entry also represents the absolute height of COM to the level ground rz.

Similarly, by deriving the body lateral and fore/aft unity vectors in the tripod coordinate

system b1 = MBT

[

1 0 0
]T

and b2 = MBT

[

0 1 0
]T

, respectively, it directly fol-

lows that the orientation states, pitch α, roll β and yaw γ, with respect to current tripod

coordinate system T, are

α := arctan

(

π3◦b2√
(π1◦b2)2+(π2◦b2)2

)

β := arctan

(

π3◦b1√
(π1◦b1)2+(π2◦b1)2

)

γ := arctan

(

π1◦b2√
(π2◦b2)2+(π3◦b2)2

)

(4.3)

where we use the notation πi ◦ v to denote the ith entry of a vector, v ∈ Rn. Like COM

displacement in vertical direction rz, two of the three orientation states, pitch α and roll
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Figure 4.3: Sketch of motion of two consecutive tripod stance phases and one double stance

phase in between. The symbols ◦ and ? indicate the event of foot touchdown.

β, present the absolute orientation with respect to the level ground, the world coordinate

system, W. On the other hand, to represent the remaining states—COM displacement in

lateral rx, fore/aft ry and yaw γ—requires the information of the motion history which will

be detailed in the next section.

4.1.2 Leg Based Odometry via Composition of Single Stance Measure-

ments

We use the term odometry to denote the computation of instantaneous body pose in

the world coordinate system W, relative to a frame originally aligned with that of the

body before the initiation of its motion. We will now detail how the single stance phase

pose computations described above in Section 4.1.1 can be integrated over multiple steps

to generate this continuous computation of absolute body pose.

First we compute the homogeneous transformation between the tripod coordinate sys-

tem of consecutive single stance phases Tj and Tj+1, as follows. Assuming the toes defining

these tripod coordinate systems are stationary throughout their presumed stances, i.e. there

is no slippage and no liftoff, and assuming there is an adequate period of double support

where the two stance phases overlap for a time sufficient to complete their respective single

stance pose computation Then both coordinate systems are related to the same moving

body coordinate system, B as depicted in Figure 4.3. Now, assuming that the prior tripod

coordinate system Tj , has been expressed in world coordinates, the representation of its suc-

cessor Tj+1, in the world coordinate system follows by the properties of rigid transformations

in a straightforward manner that we now detail.

We index single stance phases, j = 0, 1, ..., according to their occurrences over the
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course of locomotion where we denote the jth single stance tripod coordinate system by

Tj . Without loss of generality, assume that the tripod coordinate system of the first single

stance phase coincides with the world coordinate system, T0 ≡ W.

The key to establishing a relationship between the tripod coordinate systems of two

consecutive single stance phases is the fact that there exists an intermediate double stance

phase where all legs are in ground contact. This allows us to define simultaneously the

tripod coordinate systems of the single stance phase before, Tj−1, and after, Tj , this double
stance phase. Letting NBjTj denote the map from the body coordinate system B, to the jth

tripod coordinate system Tj , defined in (4.2), we compute the map relating the two tripod

coordinate systems of consecutive single stance phases NTjTj−1 : Tj → Tj−1, given by

NTjTj−1 := NBj−1Tj−1 ◦ N−1
BjTj

.

In the on-line implementation of the pose computation algorithm we need to detect

double stance phase in order to compute the transformations between tripod coordinate

systems of consecutive single stance phases NTjTj−1 . Taking advantage of the flat ground

plane P, and assuming that all toes lie on the same plane only during double stance phase,

in our application we empirically set a threshold fρ, on a planarity function fρ(si), i=1...6,

detailed below to determine the double stance phase.

Planarity function is a function we use to determine the “planarity” of a set of points

by finding the least squared error to a specific plane which is parameterized with minimum

least squared error to these points. Given a set of N points in the 3-dimensional space

si, i=1...N, by defining the covariant matrix as

P :=
∑N

i=1 s
T
i si − sT s where s := 1

N

∑N
i=1 si,

the eigenvector v, associated with the smallest eigenvalue in P by function V : v := V(P)

represents the normal direction of the plane with minimum least squared error to these

points. With the knowledge that the plane passes through the mean of the points, we can

define the planarity function as

fρ(s) :=
1
N

∑N
i=1[(si − s).V(P)]2 (4.4)

which yields the mean squared distance of the points around the best common plane3.

In our application we empirically set a threshold fρ on the planarity function fρ(s),

with six toe coordinates in the body coordinate system si, i=1...6, as the inputs to determine

the double stance phase in order to compute the transformations between tripod coordinate

systems of consecutive single stance phases. Figure 4.4(a) illustrates the flow diagram of the

complete on-line body pose computation algorithm utilizing the planarity function fρ(s).

3In general, planarity can also be determined by the relation between eigenvalues in a covariant matrix
P, but we prefer to use (4.4) because it is represented in physical measurements.
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Figure 4.4: (a) Flow chart for the within-stride body pose computation and leg odometry

functions; (b) Commutative diagram relating the tripod coordinate systems Tj .

The commutative diagram of Figure 4.4(b) illustrates the sequential relationship between

the tripod coordinate systems Tj . As a direct consequence, the map NTjT0 : Tj → W,

relating the jth tripod coordinate system Tj , to the world coordinate system W ≡ T0, can
be defined recursively,

NTjT0 := NTj−1T0 ◦ NTjTj−1 , j ∈ {1, 2, ...}

where NT0T0 := id. This in turn leads to the definition of the rigid transformation NBjW :=

NTjT0 ◦ NBjTj that relates points, pB , expressed in the body coordinate system, B, during
the jth single stance phase, to their representation in the world coordinate system,W, which

we prefer to write as

NBjW(pB) := MBjW (pB − cj) . (4.5)

More precisely, MBjW is the rotation matrix transforming the coordinates in the jth body

coordinate system to the world coordinate system, and cj is the origin of the world frame

represented in the jth body frame.

The body pose is now read off the entries of the transformation matrices in the familiar

manner. The COM translation in lateral rx and fore/aft ry directions as well as body

orientation in yaw γ are computed from the rigid transformation, NBW , shown in (4.5)
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in the similar manner to the method shown in Section 4.1.1 [Pau83] since these three

configuration variables require the whole history of locomotion, i.e. localization state. On

the other hand, the COM translation in the vertical rz direction as well as body orientation

in pitch α and roll β are directly computed from the within-stride rigid transformation NBT ,
shown in (4.2) as detailed in Section 4.1.1 to eliminate the possible accumulation error due

to unnecessary integration since these are history-independent states, i.e. stability states.

4.1.3 Short Discussion

The algorithm is quite general, remaining valid, in principle, on any terrain to which a

fixed toe coordinate system can be established. In practice, two caveats mitigate against

its utility on badly broken or unsteady ground. Considering the latter, for sufficiently

treacherous terrain, the toe frame will cease to be statically stable, and slipping legs will

invalidate the assumptions upon which the computation is based. In these settings, the

ability of a legged machine like RHex to balance dynamically will exceed the ability of

this quasi-static strain-based model to sustain accurate pose; leg strain data is likelier to

be more useful as a means of determining ground reaction forces; pose information would

require the IMU we discuss in the paper’s conclusion. Considering the former, the value

of this algorithm in isolation also seems likely to diminish on badly broken ground—even

terrain that affords good stable toe holds—since the orientation of the resulting toe frame

relative to one fixed in the static world will presumably be completely unknown. Again,

we anticipate that the addition of IMU based data, for example, knowledge of the direction

of gravity, will prove vital in such settings. Along the same lines, the reader should note

that there is no intrinsic need for a tripod of ground contacts—merely a statically stable

toe frame which might even be established by a biped’s single foot.

4.2 Ground Truth Measurement System for 6 DOF Body

Pose

In order to evaluate the performance of the body pose computation algorithm in realistic

robot operating conditions, we utilize a ground truth measurement system (GTMS) [Sha03],

a 3-dimensional visual tracking system for multiple markers.

Figure 4.5 illustrates the key components of the GTMS setup. Two analog cameras

(SONY XC-77) are located on both sides of a 3m x 3m runway looking down from a height

of 2 meters combined with two halogen lamps installed next to each camera for illumination.

The video streams are synchronized by two junction boxes (SONY, JB-77), digitized by two

frame grabber cards (Data Translation, DT3155) at 30 Hz, and imported into a Pentium-

based PC running Linux as our computational resource. To ease the detection of the

markers, the runway and the robot RHex are covered with black cardboard as shown in

Figure 4.6(a). Three markers made by spherical balls covered with 3M reflective tape are

55



Ground
Truth

Measurement
System

major

minor

normal

COM

PSfrag replacements

P

sync-LED

B

W

W





















rx

ry

rz

α

β

γ



















NBW

p1

p1

p1

p1

p2

p2

p2p2

p3

p3

p3
p3

Figure 4.5: Ground Truth Measurement System: Two cameras track the three markers on

the body which are depicted by numbered pentagons. We use a forth marker (an LED)

on the robot, shown as an empty circle, to synchronize the logged data stored in the robot

with the visual data. An off-line system computes body pose with respect to the world

coordinate system W.

(a) (b)

Figure 4.6: Photos of Legged RHex (a) and Wheeled RHex (b) in black covers

installed on top of the robot. For synchronization between robot actions with the visual

recording a LED referred as sync-LED installed on top of the robot acts as a controllable

forth marker which is visible to the cameras as well.

An experiment starts with the robot at standing pose in the beginning of the runway

within the field of view of both cameras. The sync-LED which is off in the beginning is

switched on, indicating that t = 0, for the run right after visual recording starts. For the

following 9 seconds, the maximum length of the visual recording limited by PC’s buffer,

the user commands the robot to walk in a straight line while GTMS records digital video

streams from two cameras into PC’s memory. After the recording is complete, the raw

visual data is processed by an off-line tracking program which triangulates the positions

of all the markers starting from the frame when the sync-LED is first detected, and the
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Table 4.1: Body Pose Absolute Maximum Error in GTMS Measurement

state rx ry rz α β γ

unit cm cm cm deg deg deg

abs max 0.5 0.5 0.5 1.71 2.79 1.30

final markers’ trajectories represented in the world coordinate system, W, are saved in a

file for follow-up computations. The robot pose can then be calculated based on the known

geometric relation between the markers and its COM.

Currently three markers, p1, p2 and p3, are installed on the top of RHex’s frame on left

back corner, right back corner, and middle front accordingly shown in Figure 4.5(Left). The

COM located in the center of the RHex frame with distance dCOM to the plane defined by

three markers Pmarker, can be derived by the following procedures. First, find the normal

vector of the plane Pmarker, nmarker by the cross product (nmarker = (p2−p3)×(p1−p3)√
||(p2−p3)×(p1−p3)||

2
2

).

Second, find the point p5 located on the plane Pmarker where the normal vector passes though

COM, which is p5=
1
4
p1+

1
4
p2+

1
2
p3 in the current setting. Third, Derive the COM located with

distance dCOM below p5 on the Pmarker by the equation p5+nmarkerdCOM . Three orientation

angles, pitch α, roll β, and yaw γ, can be directly derived by the same equation shown in

(4.3) with b1 =p2−p1 and b2 =p3−
1
2
p1−

1
2
p2.

The triangulation performance of the GTMS is measured at a set of points scattered

within the field of view of the cameras. We compare the output of the triangulation to

the known physical location for each marker and determine the absolute maximum error

in triangulation to be 5mm. In the above procedure, error in the vertex positions leads to

maximum error in body pose states. For each state we construct the worst case scenario

that yields the largest error given by a triangulation error. Plugging in the empirically

measured triangulation error we obtain the absolute maximum error for each state as listed

in Table 4.1.

4.3 Performance Evaluation

We now report on the performance of the pose estimation scheme presented in Section

4.1 using the strain based leg sensor introduced in Section 3.6. We investigate performance

under realistic operating conditions over multiple steps, reporting on the effects of increas-

ing speed and decreasing surface friction. The reader should note that RHex’s relatively

constrained kinematics preclude the exercise of its yaw degree of freedom when it walks

with no aerial phase and no toe slippage, hence the implementation we discuss in this sec-

tion will entail no data of that nature—we discuss measurements involving only the five

configuration variables: the displacement of the COM in the lateral direction, rx, fore/aft

direction, ry, and vertical direction, rz, as well as orientations given by pitch, α, and roll,
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Table 4.2: RMS Error of the Body Pose Computational Algorithm over Multiple Steps

(Medium speed, 0.35 m/sec)

Run # State Reference

total number

walking of

distance strides

rx ry rz α β ν υ

(cm) (cm) (cm) (deg) (deg) (cm)

Run #1 0.56 1.52 0.17 0.50 0.63 85.1 8

Run #2 0.57 1.98 0.28 0.64 0.80 75.0 7

Run #3 0.33 1.20 0.22 0.78 0.81 75.2 7

Run #4 0.27 1.46 0.24 0.54 0.69 96.8 9

Run #5 0.30 1.94 0.19 0.53 0.64 84.2 8

avg 0.41 1.42 0.22 0.60 0.71 83.3 7.8

std 0.13 0.32 0.04 0.10 0.08 8.0 0.7

β in the world coordinate system, W.

In our assessment we compare the output of the computational algorithm to independent

measurements made by a visual GTMS described in Section 4.2, different from the one used

in the previous section described in Section 3.5. Performance is measured by the vector

RMS error between the outputs of the algorithm and GTMS, given by

fRMSE(d, d̂) :=

√

(
∣

∣

∣

∣

∣

∣
d− d̂

∣

∣

∣

∣

∣

∣

2

2
/N) (4.6)

where d = (d1, ...,dN ) and di := (rx, ry, rz, α, β)i represents the configuration trajectory

with length N from the GTMS, while d̂ denotes the corresponding configuration trajectory

estimate output from the algorithm.

A typical run yields two sets of data for each configuration variable: GTMS measure-

ments (green solid line); and algorithm outputs (blue dashed line). Figure 4.7 shows the

comparison of these plots for each configuration variable for a typical run over multiple

steps. Note, as explained at the end of Section 4.1.2 that the rx and ry computed (dashed)

traces represent the result of the high level “Odometry via Composition” algorithm while

the rz, α, and β traces represent the result of the within stride computation described in

Section 4.1.1. In Table 4.2 we compute the RMS error for each configuration variable as well

as the mean (avg) and standard deviation (std) of the RMS error for a typical experiment

set which contains five runs4. We also include GTMS measured elapsed distance ν, and

number of tripod strides for each run υ, as reference.

4Performance of single tripod steps is detailed in Section 4.3.4.
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Figure 4.7: Body pose states measured by GTMS (solid line) and computed according to

our algorithm (dashdot line)

4.3.1 Performance at Varying Speeds

Three sets of experiments measure the effects of walking speed on pose estimation per-

formance: slow (0.25 m/s); medium (0.35 m/s); and fast (0.51 m/s). All of these operating

regimes fall into the continuous contact family that our algorithm presumes. However, the

duration of the double stance and the magnitude of the ground reaction forces differ as

the speed changes resulting in different levels of error in frame composition during double

59



Table 4.3: RMS Error of the Body Pose Computational Algorithm over Multiple Steps at

Varying Speeds over Cardboard (µs = 0.65, µk = 0.60)

Statistics State Reference

total number

walking of

distance strides

rx ry rz α β ν υ

(cm) (cm) (cm) (deg) (deg) (cm)

Slow walking speed (0.25 m/s)

avg 0.42 4.53 0.30 0.78 0.73 84.0 8.4

std 0.13 0.80 0.08 0.09 0.06 6.2 0.5

Medium walking speed (0.35 m/s)

avg 0.41 1.42 0.22 0.60 0.71 83.8 7.8

std 0.13 0.32 0.04 0.10 0.08 8.0 0.7

Fast walking speed (0.51 m/s)

avg 0.39 1.41 0.27 0.63 0.68 84.8 7.4

std 0.05 0.25 0.04 0.08 0.08 6.5 0.7

stance.

Table 4.3 summarizes the results for the speed experiments. At all speeds, small RMS

error values compared to the robot size (50cm x 25cm x 15cm) indicate successful pose

computation where the mean error in angular states remain less than 1 degree and that of

lateral rx and vertical rz positions are less than 1 cm. Since the slippage during double

stance has significant impact on the fore/aft ry direction of the robot, the corresponding

RMS error is the largest. We observe that the error in the fore/aft position decreases with

increasing speed. This is due to two changes: 1) an increase in speed causes a shorter double

stance period improving the accuracy of the sequential composition computation; and 2)

ground reaction force magnitude increases with speed, decreasing the likelihood of slippage

during stance.

4.3.2 Performance over Different Ground Conditions

In a second set of experiments we investigate the effects of varying surface coefficients

of friction, which we expect to have most significant impact on the accuracy of our pose

estimation algorithm. For this study, we appeal to the standard macroscopic model of

stickiness [HR88], and characterize surfaces according to their static or stiction, µs, and

kinetic or sliding, µk, friction coefficients.

We empirically determine the friction coefficient of surfaces to be used in these exper-

iments by placing the robot on the surface of interest in the standing pose and pulling in

the fore/aft direction. The exerted force is measured by a 1-DOF force sensor (Cooper
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Table 4.4: RMS Error of the Body Pose Computational Algorithm over Multiple Steps over

Different Ground Conditions at Slow Walking Speed (0.25 m/s)

Statistics State Reference

total number

walking of

distance strides

rx ry rz α β ν υ

(cm) (cm) (cm) (deg) (deg) (cm)

Cardboard (µs = 0.65, µk = 0.60)

avg 0.42 4.53 0.30 0.78 0.73 84.0 8.4

std 0.13 0.80 0.08 0.09 0.06 6.2 0.5

Plastic (µs = 0.33, µk = 0.27)

avg 0.40 4.45 0.51 0.83 0.65 79.0 8.0

std 0.08 0.82 0.05 0.05 0.06 6.2 0.6

Plastic covered with wet soap (µs = 0.20, µk = 0.11)

avg 1.39 9.72 0.45 0.63 1.12 73.8 7.4

std 0.22 1.30 0.07 0.07 0.22 5.6 0.5

Plastic covered with dry soap (µs = 0.07, µk = 0.05)

avg 1.82 9.40 0.42 0.63 0.65 78.6 8.2

std 0.28 0.56 0.07 0.09 0.05 3.1 0.4

Instruments, LFS260), and the collected data is analyzed to determine the static, µs, and

kinetic, µk, friction coefficients.

In these experiments the robot walks at slow speed (0.25 m/sec) over four types of sur-

faces: cardboard (µs = 0.65, µk = 0.60); plastic (µs = 0.33, µk = 0.27); plastic covered with

wet soap (µs = 0.20, µk = 0.11); and plastic covered with dry soap (µs = 0.07, µk = 0.05).

Table 4.4 summarizes the results of this experiment set. As the friction coefficient decreases

we observe significant deterioration in the accuracy of the horizontal components (rx, ry) of

the COM. This is a direct result of the increase in slippage. The vertical component (rz) of

the COM and angular configuration variables (α, β) are not affected as severely since these

are invariant with respect to COM horizontal translation (the most significant component

of a “slipping” robot’s motion), and, moreover, their computation only depends on the

current single stance phase measurements but not on any of the previous ones. In general,

except on the most adversarial slippery surfaces such as the soaped plastic that we specially

prepared for this study, the algorithm performs well and consistently over normal ground

conditions. For example, those characterizing cardboard or plastic that seem to typify the

static friction coefficients we observe (0.3 ≤ µs ≤ 0.7) on most of the indoor terrain that

the robot’s rubber toes encounter.
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4.3.3 Odometry Performance

Although online estimation of within-stride state represents our chief motivation for

developing this body pose sensor, we have noted in the introduction a large literature in

the field of mobile robotics concerned with odometry. We have also observed in Section

4.1.2 that the assumptions of the walking gait over level terrain allow the computation of

legged odometry using the procedure that we described there. Thus, we are interested in

evaluating the idea of “legged odometry” presented here.

Table 4.5 compares our leg strain based odometry estimates, by reference to discrepan-

cies with GTMS measurements of elapsed distance, with sensorless schemes for the legged

machine as well as on a wheeled implementation of the Robot pictured in Figure 4.6(b).

With no sensing apart from motor shaft measurements, blind odometry estimates result

from counting the number of leg cycles and multiplying by a previously calibrated distance-

per-cycle constant. This is also the traditional approach to odometry in wheeled vehicles as

well. We ran calibration tests for RHex and a wheeled implementation of the robot, count-

ing the number of motor shaft cycles over the same long flat surface to get the best possible

conversion constant. The table presents discrepancies, κ(%) (=|∆ν|/ν), as a percentage of

the GTMS measured elapsed distance ν, for each of the three odometry methods: sensor-

less legged; pose-based legged; and sensorless wheeled. The results show that the leg strain

based odometry from body pose measurements is greatly superior to the blind predictions

of the open loop scheme, by nearly an order of magnitude at the higher speeds where the

inaccuracies of double support have less effect. The dynamical nature of legged walking5

causes speed variations during locomotion that incur significantly more slippage, exacer-

bated at slower gaits by prolonged double support, than the far smoother ride afforded by

wheels. Thus, our sensor based legged odometry is significantly less accurate than the blind

results from counting motor shaft revolutions on the wheeled version of the same machine.

4.3.4 Single Stance Body Pose Computation

The performance analysis of the pose computation in the previous subsections follows

the hierarchical structure of the algorithm detailed in Section 4.1.2. This section focuses

on the error in the low level “stride by stride” individual single stance phases detailed in

Section 4.1.1 without the complications introduced by the sequential composition in the

higher level. We set the origin of both the world coordinate systemW, as well as the tripod

coordinate system T, according to the COM of the robot measured by the GTMS in the

beginning of each single stance phase. Based on this common reference, the output of the

algorithm and the measurements of the GTMS are plotted against each other. Figure 4.8

shows such a set of plots for a typical run. For each single stance phase we evaluate the

RMS Error for each configuration variable. Table 4.6 summarizes the RMS Error values for

5even in the absence of an aerial phase, RHex’s gaits exhibit a significant interchange of body kinetic and
leg spring potential energy in stance.
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Table 4.5: Odometry Performance at Varying Speeds and over Different Ground Conditions

(RHex with Leg Strain Based Pose Sensor vs. Sensorless RHex vs. Wheeled RHex)

Statistics Legged RHex Wheeled RHex

GTMS sensorless pose-sensor-based GTMS

ν |∆νd| κd |∆νl| κl ν κw

(cm) (cm) (%) (cm) (%) (cm) (%)

Slow walking speed (0.25 m/s) on cardboard (µs = 0.65, µk = 0.60)

avg 84.0 17.9 21.4 5.1 6.1 87.6 0.3

std 6.2 0.7 2.0 1.9 0.7 3.3 0.09

Medium walking speed (0.35 m/s) on cardboard (µs = 0.65, µk = 0.60)

avg 83.8 17.6 21.1 1.8 2.2 83.3 0.3

std 8.0 1.8 1.0 0.8 1.0 1.8 0.07)

Fast walking speed (0.51 m/s) on cardboard (µs = 0.65, µk = 0.60)

avg 84.8 13.9 16.3 1.5 1.7 80.8 0.5

std 6.5 3.1 2.9 0.6 0.6 0.9 0.26)

Slow walking speed on plastic (µs = 0.33, µk = 0.27)

avg 79.0 18.0 22.8 5.3 6.6 87.6 0.3

std 6.2 1.9 1.8 3.4 4.4 5.2 0.08

Slow walking speed on plastic covered with wet soap (µs = 0.20, µk = 0.11)

avg 73.8 16.0 21.8 6.0 8.2 90.2 1.7

std 5.6 0.6 1.5 0.4 0.7 4.0 0.22

Slow walking speed on plastic covered with dry soap (µs = 0.07, µk = 0.05)

avg 78.6 20.9 26.5 14.0 17.8 93.2 1.2

std 3.1 2.5 2.9 0.7 0.6 5.1 0.43

Table 4.6: RMS Error of Single Stance Body Pose Computation (Medium speed, 0.35 m/sec)

Run # State

rx ry rz α β

(cm) (cm) (cm) (deg) (deg)

Run #1 0.16 0.40 0.13 0.44 0.58

Run #2 0.22 0.35 0.19 0.56 0.89

Run #3 0.27 0.33 0.19 0.54 0.77

Run #4 0.24 0.44 0.16 0.42 0.78

Run #5 0.27 0.52 0.13 0.50 0.70

avg 0.23 0.41 0.16 0.49 0.74

std 0.04 0.07 0.03 0.05 0.10

the data illustrated in Figure 4.8. The mean and standard deviation of RMS Error for each

state is also computed.
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Figure 4.8: Pose states measured by GTMS (solid line) and computed according to our

algorithm (dashdot line) for single stance body pose computation.

4.4 Short Discussion

We have introduced a continuous-time full body pose estimator for a hexapod robot

based on the kinematic configuration of its legs suitable for robot operating in the following

two conditions: A) the body is supported by at least three legs with non-collinear toes at any

given time; and B) ground contact legs have no toe slippage. The algorithm is structured in

a two layer hierarchy: the lower layer relates leg configuration to body pose within a single
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stance while the higher layer recursively composes consecutive single stance measurements to

achieve complete legged odometry —continuous pose computation across multiple steps. We

have implemented this algorithm on the robot RHex [SBK01] utilizing strain measurements

of its 4-bar legs [Moo01] linked over a wireless communications network [Kom05]6.

Using a high speed visual ground truth measurement system, we have shown that the

leg configuration model used to interpret the strain data achieves very high accuracy in

realistic operating conditions, e.g. effective length errors of less than 2%. Using a separate

conventional frame rate visual ground truth measurement system we have evaluated the

performance of the resulting low level single stance pose estimator and the high level legged

odometry system at various speeds and conditions of surface friction. The body pose es-

timator is shown to perform well at all speeds over normal ground conditions—achieving,

for example, five times more accurate legged odometry than computed from averaged open

loop distance-per-stride estimates. The estimator continues to function well over a variety

of ground conditions, with the onset of significant performance degradation on the most

slippery surfaces like soaped plastic, whose coefficient of friction is less than a third that of

normal linoleum.

In its present form, the pose computation algorithm cannot function if the operating

regime includes an aerial phase as is typical of RHex’s most useful dynamical gaits [Sar02].

To remedy this shortcoming in Chapter 5 we introduce the “Advanced Inertial Measurement

Unit” composed by linear accelerometers and rotational rate gyroscopes to complement the

body pose sensor derived from leg kinematic configuration introduced here. This multiple

array of sensor modalities will not only allow us to perform pose estimation during aerial

phases but also enable us to detect and correct errors resulting from slippage, the primary

source of inaccuracy in the present sensor.

6Note that, in consequence of RHex’s constrained kinematics, as explained in Section 4.3, we have not
exercised its yaw degree of freedom in this study.
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CHAPTER 5

Advanced Inertial Measurement Unit

This chapter introduces a framework to construct an advanced inertial measurement

unit delivering linear and angular acceleration as well as angular velocity through the con-

struction of a novel 12-axis accelerometer suite. The additional angular acceleration data

generated by the advanced IMU coupled with the linear acceleration and angular velocity

from a traditional IMU builds a stronger foundation of sensor data fusion for better state

estimation. In addition to the inertia force derived by the accelerometers through the tradi-

tional IMU, the new system also delivers information of inertia torque acting on the body,

thus completing force/torque information in a physical second order dynamical system. We

implement this advanced inertial measurement system on RHex’s body to deliver COM

translational state and body rotational state as detailed in Chapter 6.

Section 5.1 briefly reviews previous related work on angular acceleration measurements,

followed by Section 5.2 introducing 3-dimensional coupled calibration which improves the

accuracy of measurement on practical implementation. Section 5.3 describes the method-

ology, characteristics, and initial experimental results of this 12-axis accelerometer suite.

5.1 Previous Related Work on Linear and Angular Acceler-

ation Measurement

The most direct way to obtain 6 DOF linear and angular acceleration estimates, aCOM

and ω̇, is to measure linear acceleration by accelerometers implemented according to Figure

5.1(a). The green solid arrows represent three 1-axis accelerometers installed orthogonally

at COM, also the origin of body frame, and three 1-axis accelerometers installed on the

principle axes and oriented in specific directions. The result is derived from the equation1:

16 DOF acceleration can also be calculated if the whole six 1-axis accelerometer suite is “shifted” away
from COM. However, in this case linear acceleration, aCOM , will also be a function of angular velocity.

66



PSfrag replacements

W

O
X Y

Z

B

o

x y

z

d1
d2

d3

1 2

3

4

(a)

PSfrag replacements

W

O

X

Y

Z

B

o

x

y

z

d1

d2

d3

1

2

3

4

(b)

Figure 5.1: (a) 6-axis accelerometer suite (green arrows) and 9-axis accelerometer suite

(green and blue arrows); (b) 6-axis accelerometer IMU proposed by DeBra [CLD94]

aCOM =
[

aox aoy aoz

]T

ω̇x = (a2z − aoz)/d2 − ωyωz

ω̇y = −(a1z − aoz)/d1 + ωxωz

ω̇z = (a1y − aoy)/d1 − ωxωy.

(5.1)

Deriving linear acceleration is straight forward, and angular acceleration can be derived

by obtaining angular velocity by integration with given initial conditions prior to plug-

ging it into (5.1). However, in a physical implementation the unbounded drifting error in

angular velocity due to numerical integration rapidly deteriorates the accuracy of angu-

lar acceleration measurement. Consequently, King proposed to use a 9-axis accelerometer

suite [PKK75], green solid arrows plus blue dashed arrows shown in Figure 5.1(a), to con-

struct the IMU, generating another three equations for angular acceleration computation:

ω̇x = −(a3y − aoy)/d3 + ωyωz

ω̇y = (a3x − aox)/d3 − ωxωz

ω̇z = −(a2x − aox)/d2 + ωxωy.

(5.2)

The summation of (5.1) and (5.2) eliminates the crossterms of angular velocity, resulting in

a pure input output kinematic mapping from sensor data to 6 DOF acceleration measure:

67



ω̇x = (a2z − aoz)/d2 − (a3y − aoy)/d3

ω̇y = (a3x − aox)/d3 − (a1z − aoz)/d1

ω̇z = (a1y − aoy)/d1 − (a2x − aox)/d2.

(5.3)

Following the idea of eliminating the crossterms, DeBra proposed the gyro free IMU

[CLD94] shown in Figure 5.1(b) with six 1-axis accelerometers installed on three principle

axes with equal distance to the origin, ρ, and oriented in specific directions. In this special

arrangement angular acceleration is a function of accelerometer measurements (ak, k=1∼6)

and ρ only. However, the downside of obtaining stable angular acceleration measure with

three less 1-axis accelerometers than proposed by King is instability in linear acceleration

due to its dependency on angular velocity:

aCOM = g6l(ak, ρ, ωiωj) k=1∼6 , i,j=1,2,3

ω̇ = g6r(ak, ρ).
(5.4)

As a result, the 9-axis accelerometer suite seems to be the minimum number of ac-

celerometers to obtain a stable solution for full 6 DOF acceleration measurement. However,

in using King’s method, the critical constraint on locations for accelerometer installation,

3 at COM and 6 along principle axes2, as well as the practical problem of accuracy of mea-

surement direction, detailed in the following Section 5.2, inevitably limit the feasibility of

the practical implementation.

5.2 Coupled Calibration

Theoretically, acceleration along a specific direction—usually the principle axis of the

body frame; ex: az—can be obtained by a 1-axis accelerometer τ ′3, installed on the body

frame as shown in Figure 5.2(a) with known body orientation—α, β, and γ—utilized to

eliminate the influence of the gravity force. From the reverse point of view, the sensor

reading τ ′3, depends on body orientation and acceleration along that specific direction only

(ex: az). However, in a practical implementation the misalignment shown in Figure 5.2(a)

between desired and measured directions of acceleration due to installation error causes that

the sensor reading, τi, is linearly dependent on the acceleration along all three principle axes:

τi = gi(ax, ay, az, α, β, γ) i=1,2,3. (5.5)

For this reason, in the general case, a 3 DOF acceleration reading is required (τi, i=1,2,3) for a

single acceleration along a specific direction (ex:az). If only one accelerometer measurement

is applied, the acceleration measurement in the specified direction will be contaminated by

the acceleration in the remaining two directions. This practical concern motivates us to use

2We cannot “shift” this 9-axis accelerometer suite away from the COM since this causes aCOM to be
a function of angular velocity, which conflicts with the main idea of eliminating angular velocity in the
computational process.
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Figure 5.2: (a) Sketch of misalignment between an accelerometer measuring directions—τ1,

τ2, and τ3—and the principle axes; (b) Sketch of an acceleration measurement along z by a

misaligned accelerometer τ3

a 3-axis accelerometer suite as the “basic unit” for acceleration measurement, which allows

us to construct a 3 DOF coupled mapping from sensor space to orthogonal acceleration

space along three principle axes ak with known body orientation, expressed in the general

form:

ak =
[

ax ay zz

]T
= gortho(τ1, τ2, τ3, α, β, γ). (5.6)

This function gortho(•) contains three operations: first, linear coupled 3 × 3 mapping of

acceleration from directions along sensors to that along principle axes; second, rotation

operator to rotate coordinates of acceleration from body frame to world frame; and third,

remove the acceleration due to gravity.

Considering the case that acceleration az is measured by only one misaligned 1-axis

accelerometer τ3 pointing (cosθ2cosθ1, cosθ2sinθ1, sinθ2), spherical coordinates represented

in cartesian coordinates, shown in Figure 5.2(b), the percentage error of measuring az is

given by

(axcosθ2cosθ1 + aycosθ2sinθ1 + azsinθ2)− az
az

× 100

In the case, θ1 = 45o, θ2 = 85o (only 5o misalignment) and ax = ay = az which indicates that

acceleration has the same range along with three orthogonal components, the percentage

error is 11.9%. The error will increase greatly when the range of acceleration due to motion
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is much less then that due to gravity. For example, if θ1 = 45o, θ2 = 85o (the same, only 5o

misalignment) and ax = 5ay = 5az which assumes gravity is along the direction of ax and

the range of acceleration due to motion is only 20 % of gravity, then the percentage error

goes up to 36.5%. This shows the importance of adopting a 3-axis accelerometer suite at

any measurement point, and further explains the practical challenge of implementing the

9-axis accelerometer suite proposed by King detailed in Section 5.1.

5.3 Linear and Angular Acceleration as well as Angular Ve-

locity from a 12-Axis Accelerometer Suite

The traditional IMU consisting of a 3-axis accelerometer installed at the COM and

a 3-axis gyro on the body delivers COM linear acceleration (r̈x, r̈y, and r̈z) and body

angular velocity (α̇, β̇, and γ̇) in 6 independent dimensions. In order to obtain angular

acceleration data (α̈, β̈, and γ̈) as an input to a complete second order dynamical model for

a rotational state, we propose a general method that algebraically computes six independent

translational and rotational acceleration measurements as well as three independent angular

velocity measurements from a 12-axis accelerometer suite using the kinematic relationships

of rigid body motion as follows.

5.3.1 Methodology

The acceleration vector ap, in an inertial “world” frame of a point, p, rigidly attached

to an accelerating “body” frame with origin, o, is a function of the body’s angular velocity,

ω, and angular acceleration, ω̇, as well as the translational acceleration of the origin, ao, of

the body frame given by

ap = ao + ω̇ × rop + ω × (ω × rop), (5.7)

where rop, the fixed location of p relative to the body, is presumed known á priori. In

general, we are interested in the motion of the body relative to the world, hence we seek to

extract from measurements, the left hand quantities shown in (5.7), to derive the right side

unknowns: the COM translational acceleration3,

aCOM = ao =
[

r̈x r̈y r̈z

]T
,

and the angular acceleration and velocity,

ω̇ =
[

α̈ β̈ γ̈
]T

ω =
[

α̇ β̇ γ̇
]T

=
[

ω1 ω2 ω3

]T
.

3The original of body frame is usually assigned at the COM.
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Note that the latter variable appears in a quadratic form, hence (5.7) defines a function

that is linear in the six unknowns, aCOM , ω̇, and linear in

q(ω) =
[

ω2i + ω2j ωiωj

]T

i<j in 1,2,3
, (5.8)

the six distinct second degree monomials of ω×ω formed from the three unknowns of ω. In

Section 5.3.4 we show how to invert the quadratic map q from ω to ω×ω, thereby establishing

that the determination of the nine unknowns in (5.7) reduces to a linear computation

that we will proceed to detail—at the expense of requiring the increase of three additional

measurements beyond the nine intrinsic dimensions of the data.

The proposed accelerometer suite depicted in Figure 5.3 yields a 12-dimensional vector

of measurements,

as :=
[

aT
1 aT

2 aT
3 aT

4

]T

comprised of four distinct spatial acceleration vectors, following upon a very simple coupled

calibration procedure from raw accelerometer outputs detailed in Section 5.2,

ak :=
[

akx aky akz

]T

k=1,2,3,4, (5.9)

obtained at the four locations specified by the position vectors,

d :=
[

dT1 dT2 dT3 dT4

]T
∈ R12.

In each case, k = 1, 2, 3, 4, the measured acceleration vector, ak, is linearly related to the

twelve unknowns
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xvar =
[

aT
COM ω̇T q(ω)T

]T
(5.10)

by a copy of (5.7) where the role of rop is played by dk, giving rise to the 12 × 12 linear

system of equations

as = C(d)xvar, (5.11)

or in the expanded matrix form:
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Since d is known á priori, the extraction of the desired acceleration and angular velocity

data, xvar, now hinges upon the rank and numerical condition of the “structure” matrix,

C(d).

We observe that the determinant of the 12× 12 matrix C(d), det(C(d)), is given by the

determinant of the “sensor simplex” array, det(D):

det(C(d)) = (2det(D))3 (5.12)

where D :=
[

d2 − d1 d3 − d1 d4 − d1

]

. Hence, so long as the accelerometer suite of

Figure 5.3 defines a spatial tetrahedron with non-zero volume4, it provides in principle a

complete IMU—a means of extracting full rigid body acceleration and velocity data with

no recourse to rate gyros.

In practice, we have found that the numerical condition of C(d) is very sensitive to

the “shape” and “size” of the tetrahedron and its relative location to COM. Numerical

exploration quickly reveals that useful numerical inverses, C−1(d), are obtained when all

four 3-axis accelerometer suites are installed with specific geometric relations to each other

and with certain distances to the COM. Unfortunately, the numerical condition of C(d)

4That is, the four accelerometers are in general position so there is no co-planar subset of any three of
them
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degenerates rapidly as any edge of the tetrahedron is shortened below unit length (meter).

In particular, as we detail in Section 5.3.2, the largest volume tetrahedra inscribed within

RHex’s rectangular body yields very stiff structure matrices, C(d), whose large singular

values are associated with the translational and rotational acceleration components of xvar

and with uselessly small singular values associated with the rotational velocity components,

q(ω), of xvar. Consequently, in this investigation we rely upon measurements of ω aris-

ing from a MEMS gyro retaining only the acceleration components, aCOM and ω̇, of the

accelerometer suite’s estimate for xvar = C−1(d)as.

Since in current practical implementation we need the extra 3-axis gyro to provide

angular velocity data due to an ill -structured matrix, we attempt an alternate method of

applying 6-axis accelerometer suite data and 3-axis gyro data into (5.7) to construct a new

6× 6 structure matrix in order to solve linear and angular acceleration:

ap − ω × (ω × rop) = ao + ω̇ × rop, (5.13)

or in the expanded matrix form:
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This new matrix is only nonsingular if the 6-axis acceleration are measured from at least

three locations5. However, this indicates that the coupled calibration detailed in Section

5.2 used to compensate the misaligned installation error is not feasible unless another 3-

axis acceleration measure, total 9, is implemented as shown in Figure 5.4 with brown thick

arrows and blue dashed arrows. In this situation we prefer to install yet another 3-axis

acceleration measure, total 12, to let the derivation of linear and angular acceleration remain

independent of gyro measurement. We can now treat angular acceleration and velocity as

two independent sensing data to be imported into the EKF detailed in Section 6.3.1.

5.3.2 Structure Matrix C(d)

Without loss of generality, imagine the shape of the robot body as a “rectangular prism”

and the availability of space inside it. Numerical exploration reveals the condition number

of the structure matrix, C(d), is minimized when four 3-axis accelerometer suites occupy

4 of 8 corners of this prism and when the geometrical center of the prism coincides with

the COM. We also observe that the condition number is mainly determined by the shortest

edge of the prism, and increases rapidly as the prism shrinks. It achieves the minimum

(
√
2) when four 3-axis accelerometer suites located (in Cartesian coordinate, unit:meter if

using MKS) as follows:
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, (5.14)

also shown in Figure 5.5(a), and it goes up from
√
2 to {2, 4, 8, 16} when the edge of “cube”

goes down from 2 to {1, 0.5, 0.25, 0.125}.
The “best” condition number can be achieved in RHex’s size, 25cm x 50cm x 15 cm, is

1313 . However, the practical implementation of the accelerometer suite within the limited

available space left in RHex, as well as having been designed to keep COM low, thereby

not matching the geometrical center, for stability, yields the high condition number of 41

in its current setup as shown in Figure 5.5(b). From Singular Value Decomposition of the

structure matrix C(d), we observe that the subspaces spanned by small singular values

point mostly to the last 4 elements on the unknown vector xvar in (5.11) resulting in the

deterioration of the estimation of angular velocity. Therefore, in the practical implemen-

tation on RHex we inevitably adopt the gyro’s output as the only data source of angular

velocity, ωg, to complete this advanced IMU.

5One example is shown in Figure 5.4 (brown thick arrows); another example is shown in Figure 5.1(a)
(green solid arrows) detailed in Section 5.1.
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Figure 5.5: Ideal and practical locations of the 12-axis accelerometer suite: (a) Sketch of

ideal locations of the 12-axis accelerometer suites; (b) Sketch of actual locations of 12-axis

accelerometer suites implemented on RHex (Thick dashed lines indicate principle axes)

5.3.3 Performance of Angular Acceleration from 12-Axis Accelerometer

Suite

The practical implementation of a 12-axis accelerometer suite on RHex yields good linear

and angular acceleration data but poor angular velocity data due to an ill conditioned struc-

ture matrix determined by the relative locations of accelerometers, which are constrained

by the physical size of RHex. Therefore, in this section we will focus on the performance

of angular acceleration derived from a 12-axis accelerometer suite by directly integrating

the data and comparing it to the angular velocity data from the gyro. Figure 5.6, a typical

run of robot locomotion, clearly shows the matching of two curves—one from integration of

angular acceleration (cyan dashed-dot line), and the other from direct measure of gyro (ma-

genta solid line). The well-matched high frequency components, slopes of the curve, indicate

the correct estimate of angular acceleration derived from measured linear acceleration, and

the drift of the cyan dashed-dot curve also reveals the typical accumulation error due to

integration. This additional valuable information provides us with an independent channel

for data fusion in order to provide better estimates of orientation state. The performance

comparison of the systems with or without angular acceleration and with or without body

pose sensor as sensory feedbacks will be detailed in Section 6.4.2.
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Figure 5.6: Angular velocity measured by gyro (solid line) and computed by integration of

angular acceleration data from the 12-axis accelerometer suite (dashdot line)

5.3.4 Angular Velocity from a 12-Axis Accelerometer Suite

The process to obtain an invertible mapping for this quadratic system from ω × ω to

ω cannot be solved kinematically by the six available equations alone since there exists at

least one sign ambiguity for the unknowns. However, this is derivable with given the initial

condition as well as, with the availability of angular acceleration derived from the other six

equations in the same 12-axis accelerometer suite. Without loss of generality, assuming at
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time ti the state of angular acceleration and angular velocity are available, the procedure

to solve angular velocity at ti+1 is as follows: First, derive “estimated” angular velocity

by angular velocity and angular acceleration at ti using a constant acceleration model—

ωi(ti+1) = ωi(ti)+ω̇i(ti)∗(ti+1−ti). Second, adopt the sign of this estimated angular velocity

as the correct sign identification for angular velocity at ti+1. Finally, choose three scalar

components from solved q(ω), either ωiωj or ω2i + ω2j where i < j; i, j = {1, 2, 3}, to solve

angular velocity (ω), or combine both to construct a complete square—(ω2i +ω2j )+2ωiωj =

(ωi + ωj)
2, and solve the “fused” angular velocity. Theoretically, no matter which three

scalar components we select, it should yield the same angular velocity. In practice the

existence of noise may deteriorate the measurement which further suggests the advantage

of using the “fused” solution from all six components.
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CHAPTER 6

Sensor Data Fusion for Body State Estimation with

Dynamical Gaits

This chapter introduces a hybrid 12-dimensional full body state estimator for a hexa-

pod robot executing a dynamical gait in steady state on level terrain. We will focus on

alternating tripod jogging gaits because of its familiarity and importance in RHex, but the

computations below generalize to a family of gaits characterized by two conditions: A)

regularly alternating ground contact and aerial phases of motion; B) when in stance, the

body is supported by at least three legs with non-collinear toes without toe slippage1. We

use a repeating sequence of continuous time dynamical models that are switched in and out

of an Extended Kalman Filter to fuse measurements from a body pose sensor detailed in

Chapter 4 and an advanced inertial measurement unit detailed in Chapter 5.

Section 6.1 introduces notation and illustrates the nature of the open loop stabilizing

(“jogging”) gait [WLK04] we will study. Section 6.2 summarizes the acquisition of partial

state (body pose from a leg pose sensor; linear/angular acceleration and angular velocity

from advanced IMU) from raw sensor data. Section 6.3 describes the various dynamical

models in each phase of a stride from which we construct our statistical filters for full body

state along with the details of how to fuse the two independent sensing sources (leg pose

sensor and IMU) summarized in Section 6.2. Section 6.4 examines the accuracy of the

resulting body state estimator implemented on RHex.

6.1 Dynamical Locomotion (Jogging Gait)

Determining the right dynamical model for the jogging gait promises to be a complicated

task since the physical robot acts as a Lagrangian system with 36 different models depending

on touchdown-stick/touchdown-slip/liftoff conditions on each leg. Lacking sensing ability

to detect toe slippage as well as unknown stability condition under fast switching among a

large number of models, we defer the fundamental problem of estimator model selection and

1As mentioned before, this condition guarantees that the toe contacts yield a well defined coordinate
system fixed in the world frame in order to derive body pose from leg configuration detailed in Chapter 4.
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switching discussed above by recoursing to a succession of intuitively appropriate dynamical

representations of the “virtual biped” that emerges from well tuned jogging controllers

[WLK04]. We introduce three distinct models in four successively repeating phases—tripod

stance phase, liftoff transient phase, aerial phase, and touchdown transient phase.

Consider the typical sequence of leg contact conditions, depicted in the lower half of

Figure 6.1 that occurs during steady state operation in stable dynamical locomotion. Dur-

ing the ith stride interval, D(i):=[t1(i) t5(i)]⊂R, a tripod stance interval, ΥS(i):=[t1(i) t2(i)], is

succeeded by a period of time when the legs begin to liftoff, ΥL(i):=[t2(i) t3(i)], followed by

an interval of aerial flight, ΥA(i):=[t3(i) t4(i)], then touching down through another period

of varied leg contacts, ΥT (i):=[t4(i) t5(i)], to the fixed tripod stance interval ΥS(i+1) of the

next stride, D(i+1). We conceive of the liftoff and touchdown intervals, ΥL(i) and ΥT (i), as

“transients” because they typically exhibit complex sequences of successive leg contacts

that reveal little consistent pattern from run to run (or, often, even from stride to stride).

In practical implementation, the crucial leg contact information required to detect the on-

set and termination of each of these phases of a stride may be gleaned directly from the

individual leg touchdown/configuration sensors. The upper half of Figure 6.1 shows the

relation between these four phases and leg positions of two tripods generated by a custom

Buehler Clock [SBK01] from our practical implementation on RHex.

With only one active DOF on each leg, the standard way to generate a continuous time

jogging gait in RHex is to operate the clock of leg rotation of two tripods with 180o offset

in the custom Buehler Clock [SBK01] detailed in Appendix D. This clock is comprised of

slow rotation period for ground contact and a quick return period to maintain continuous

locomotion (small slope and large slope accordingly in top part of Figure 6.1). The aerial

phases occur between previous just-lifted tripod and next going-to touchdown tripod. Prac-

tically, of course, three legs of each tripod would not liftoff and touchdown at the same time,

resulting in the existence of transients with one or two legs contacting the ground between

those two phases (thin lines between thick lines in Figure 6.1).

6.2 Partial State Directly from Sensor

This section briefly introduces the methodology of obtaining partial state directly from

raw sensor data before being imported into a filter to recover the full state.

6.2.1 Body Pose from Leg Configuration Sensor

Full 6 DOF body pose (COM displacement in lateral(rx), fore/aft (ry), vertical (rz)

directions and body orientation in pitch (α), roll (β), and yaw (γ)) for a hexapod robot

in each tripod stance can be derived from a novel leg configuration measurement system

detailed in Section 3.6 and Section 4.1.1 by using a conventional (memoryless) kinematic

model generally expressed in the form:
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ward; ±180o = vertical upward) and four phases (intervals) collected from practical RHex

experimental data—aerial phase (|A|); left tripod stance phase (`La, between / .); right tri-

pod stance phase (`Ra, between / .); thin line between different phases: liftoff/touchdown

transient phases (||).

[

rx ry rz α β γ
]T

= fb = fbodypose(si,pi), (6.1)

where i = 1, 3, 5 or i = 2, 4, 6 denotes left/right tripod, si denotes the sensory measurements

available regarding the configuration of the kinematic chain connecting the robot body to

the ith toe, and pi denotes the vector from COM to hip of ith leg. In the case of RHex with

one actuated rotational DOF associated with each compliant leg, si can be denoted as

si(θi, εij) = NCiB(θi) ◦MSD i(εij)

as shown in (4.1) where NCiB denotes the ith leg position from encoder measurement θi, and

MSD i denotes a memoryless transformation from (data driven phenomenological) models

relating leg strain εij to ith leg configuration detailed in Section 4.1.1.
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6.2.2 Linear/Angular Acceleration and Angular Velocity from IMU with

12 DOF Accelerometer Suite and 3 DOF Gyro

Theoretically, linear/angular acceleration and angular velocity can be delivered by the

12 DOF accelerometer suite expressed in a general form:

[

r̈x r̈y r̈z α̈ β̈ γ̈ α̇ β̇ γ̇
]T

= f12Accel(ak), k=1,2,3,4. (6.2)

However, as detailed in Section 5.3, in practical implementation in RHex, the constrained

physical geometry results in a dubious angular velocity measurement:

[

α̇ β̇ γ̇
]T

= fw(ak), k=1,2,3,4. (6.3)

Consequently, in this investigation we rely upon measurements of angular velocity arising

from a MEMS gyro retaining only the acceleration components (expressed in two separate

functions) of the accelerometer suite’s estimate expressed in general forms:

[

r̈x r̈y r̈z

]T
= fa(ak), k=1,2,3,4

[

α̈ β̈ γ̈
]T

= fr(ak), k=1,2,3,4
[

α̇ β̇ γ̇
]T

= fgyro.

(6.4)

6.3 Fusion Algorithm for Full Body State Estimation

Tradeoffs between the performance (the accuracy of its measurements and its reliability)

and cost (actual dollars, required “real estate”, and ease of use) of a sensor suite are governed

by tightly inter-related issues arising from geometric as well as technological considerations.

Once the sensor is chosen, however, the only possibility for improved state estimates depends

on the choice of estimation model and algorithm. The design of estimation algorithms for

nonlinear dynamical systems has spawned a huge body of literature whose consideration

lies well beyond the scope of this dissertation. Hence, we concentrate our efforts on a well

understood and highly regarded standard, the Extended Kalman Filter (EKF), and devote

the remainder of this chapter to a comparison of estimates arising from different dynamical

models that make various use of the available sensor suite.

As discussed in Section 6.1, we adopt a greatly simplified view of hexapod jogging by

positing a succession of low dimensional models presumed to capture the essential features

of the robot’s rigid body dynamics as determined by an idealized periodic sequence of leg

contact conditions. We trigger the succession of one model by the next using a “hard

switch”—a deterministic predicate over the raw sensory data—and initialize the successor

using an exact copy of the predecessor’s final state. In Section 6.5, we will initiate a

discussion from a more formal point of view and seek to implement theoretically motivated
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switching procedures based upon a comparison of the multiple models’ prediction errors

against which the results of this preliminary inquiry may be compared.

We are also interested in assessing the relative value of the two sensing modalities, and

will adjust the details of the successive estimation models to accommodate the presence

or absence of appropriate subsets of the complete sensor suite. We find it most natural

to treat the leg pose sensor system, operative only during intermittent stance phases, as a

“drift-corrector” for the IMU sensor that runs continually through aerial as well as ground

contact phases. At the same time we are also interested in the effect of the extra angular

acceleration input to the traditional IMU system and to the final fused system. We seek

to determine whether one of these two subsystems is “better” than the other and whether

two operating together in this manner are better than either one alone.

In this section we first briefly review the EKF structure as a means of establishing

notational conventions. Models and resulting filters for the rotational degrees of freedom

are presented in Section 6.3.2 and those addressing the translational degrees of freedom in

Section 6.3.3. Finally, Section 6.3.4 presents our methodology to compute full body state

from each of the two independent sensing sources alone.

6.3.1 Notation Associated with the Extended Kalman Filter

Given a discrete time-invariant plant

xk+1 = f(xk,uk,wk)

with measurement

yk+1 = h(xk,vk)

where the process noise wk and measurement noise vk are white with zero means and

covariance defined by E [wkw
T
k ] = Qk and E [vkv

T
k ] = Rk, an EKF incorporates two steps:

a time update (á priori estimate),

x−k+1 = f(x−k ,uk, 0)

P−k+1 = ΦkP
+
k Φ

T
k + Qk

with Φk = ∂f
∂x |x+

k

Γk = ∂f
∂x |uk

(6.5)

and a measurement update (posteriori estimate)
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Kk+1 = P−k+1H
T
k (HkP

−
k+1H

T
k + Rk)

−1

x+k+1 = x−k+1 + Kk+1(zk −Hkx
−
k+1)

P+k+1 = P−k+1 −Kk+1HkP
−
k+1

with Hk = ∂h
∂x |x+

k

(6.6)

where Pk is error covariance matrix, Kk is the so called Kalman gain, and zk is the sensor

measurement (partial state directly from sensor shown in Section 6.2). Upon initializing

the value of state, x0, and error covariance matrix, P0, the (Extended) Kalman Filter

continuously delivers the best state “optimal” estimates by consecutively performing these

two updates at each time stamp.

The body pose measurement noise covariance arising from the leg pose sensor (Rl), along

with the linear/angular acceleration and angular velocity noise covariance arising from the

12 DOF accelerometer suite (Ra, Rr, and Rw) are propagated at nominal points (s0 and

a0) of raw sensor noise (Rsi and Rak) from empirical measurement:

Rl = JlRsiJ
T
l with Jl =

∂fb
∂si
|s0 i=1,3,5 or i=2,4,6

Ra = JaRakJ
T
a with Ja = ∂fa

∂ak
|a0 k=1,2,3,4

Rr = JrRakJ
T
r with Jr =

∂fr
∂ak

|a0 k=1,2,3,4

Rw = JwRakJ
T
w with Jw = ∂fw

∂ak
|a0 k=1,2,3,4 .

The noise covariance of angular velocity from gyro (Rg) is directly measured from sensor

noise empirically.

6.3.2 Computation of Rotational State

We find it convenient to adopt the quaternion representation of rigid body rotations,

q ∈ S3, (i.e., unit vectors in R4), in which case velocities are tangent vectors to the sphere,

ω ∈ R3, yielding the complete rotational state representation as

x7 =
[

q0 q1 q2 q3 ωx ωy ωz

]T
. (6.7)

When we introduce angular acceleration inputs from the 12 DOF accelerometer suite to

this model, we require an appropriately “inflated” view of state

x10 =
[

q0 q1 q2 q3 ωx ωy ωz ω̇x ω̇y ω̇z

]T
. (6.8)

Following a long tradition in inertial guidance literature [BDW95], for all phases of the

recurring gait cycle we adopt a naive constant acceleration model for á priori estimate (6.5),

that simply asserts that the position is the integral of velocity which is in turn the integral

of acceleration.
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Differing sensory feedback structures yield different posteriori estimates. We would like

to evaluate the following 3 models with different sensor feedback applied to fusion schemes

for three phases of jogging locomotion (tripod stance, transient, and aerial phases):

• Advanced IMU (AIMU)

With both angular velocity/acceleration available, the 10-element state shown in (6.8)

for EKF computation is adopted, and the sensor measurements (z) and the measure-

ment matrix (H) change to

zAIMU =
[

ωx ωy ωz ω̇x ω̇y ω̇z

]T

HTIMU =
[

O6×4 I6×6

]

.
(6.9)

• Fusion of Traditional IMU and Leg Pose Sensor (LPS)

The structure of EKF is similar to that of the traditional IMU (use x7 shown in (6.7)),

but with additional body pose feedback:

zTIMU+LPS =
[

q0 q1 q2 q3 ωx ωy ωz

]T

HTIMU+LPS = I7×7.
(6.10)

where
[

q0 q1 q2 q3

]T
= fq(α, β, γ) is the quaternion representation of an orien-

tation state obtained from the leg pose sensor (partial output of fb shown in (6.1)).

Note that this mode is available only in the tripod stance phase due to the availability

of the body pose sensor.

• Fusion of Advanced IMU and Leg Pose Sensor

The availability of sensor measurements in all 10-element states yields the sensor

measurements (z) being equal to the state vector shown in (6.8), which results in the

measurement matrix (H) being the identity:

zAIMU+LPS = x10

HAIMU+LPS = I10×10.
(6.11)

This mode is also available only in tripod stance phase.

6.3.3 Computation of Translational State

The procedure to apply EKF for fusion on the translational state is similar to it’s ap-

plication to rotational state but with a couple of major differences: First, the translational

state in three orthogonal directions can easily be modeled separately and linearly (EKF sim-

plified to KF); second, in contrast to the rotational degrees of freedom, there is no intrinsic
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sensory measure of translational velocity (measurement is only available in displacement

and acceleration); and third, the use of body acceleration data must be mediated by the

rotational estimates relative to the inertial frame (depending on orientation state). Due

to limited selection of sensor feedback, here we focus on the evaluation of different simple

models for á priori estimates.

Since acceleration is the principle measurement in translational state among all three

phases instead of (angular) velocity as in rotational state, the state vector for simple 1 DOF

models yields

x3 =
[

r ṙ r̈
]T
. (6.12)

Proceeding with the same naive assumption of constant acceleration, the 1 DOF model

associated with this state vector without any external input (u = 0) used in á priori estimate

in EKF is

Φacl =







1 ∆t 1
2∆t

2

0 1 ∆t

0 0 1






, (6.13)

where ∆t is time difference between the current measurement and the previous one. One

DOF constant velocity model, another common choice based on naive assumption, without

terms associated with acceleration is simply

Φvel =







1 ∆t 0

0 1 0

0 0 0






(6.14)

where the acceleration state is kept for usage in sensor feedback and easier model propaga-

tion through different phases.

One simple and useful 1 DOF model with physical principles used in aerial phase is

the ballistic model, which is a constant velocity model (Φbal = Φvel) without external input

(u = 0) in lateral/forward directions and with gravity as external input (u = g, gravity

constant) in the vertical direction with input vector as

Γbal =
[

1
2∆t

2 ∆t 1
]T

(6.15)

Unlike the rotational state with three kinds of sensor data for feedback, translational

state only has two—with/without leg pose sensor coped with continuous IMU measure:

HIMU =
[

0 0 1
]

HIMU+LPS =

[

1 0 0

0 0 1

]

(6.16)
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Another interesting model where the leg pose sensor is available during tripod phase

is a constant velocity model (Φext = Φvel) with IMU data as external inputs (Γext = Γbal),

where the feedback vector is simply HLPS =
[

1 0 0
]

.

6.3.4 Full Body State from Each Sensor Alone

Full body state can be estimated by each sensor alone (body pose sensor or IMU) without

combining with other sensors under certain model assumptions. This section illustrates the

above methodology to serve as the baseline for performance comparison.

Body State from Leg Pose Sensor

During the tripod stance phase (ΥS(i)) shown in Figure 4.2, the leg configuration sensor

delivers 6 DOF body pose data with respect to that of the initial touchdown moment

(t1(i)), detailed in Section 4.1.1. The pose and velocity state derived by differentiating the

pose information at the take-off instant, detected by the same leg configuration sensor,

can be further used as the initial condition (I.C.) for the following transient phase, which

continuously provides full state based on an assumed constant velocity model (rather than

the alternative constant acceleration model due to significant noise effects in differentiation

to obtain takeoff acceleration). Similarly, the state at the end of the take-off transient

phase passes to the following aerial phase with a physics-based ballistic model, followed by

another transient phase again before landing. With this methodology the full 12 DOF state

estimates can be provided continuously by the leg pose sensor.

Body State from Traditional IMU

Full body state can be derived from traditional IMU (TIMU) data in various ways:

from fundamental double/single integration of raw accelerometer/gyro output, by applying

a more standard method EKF described in Section 6.3.1 for further filtering, or through a

higher level algorithm by using EKF with multi-model switching (hybrid system) detailed

in Section 6.5, or by a purely customized algorithm suitable for specific tasks and applica-

tions. In order to keep up with the consistency of our simple-model strategy and establish

a standard for baseline comparison, we proceed with the same naive constant acceleration

model in the current development. Since only one sensory data is available in each dimen-

sion (linear acceleration available for translational state and angular velocity available for

rotational state), EKF computation serves only for filtering without fusion.

In the rotational state the 7-element state vector shown in (6.7) is sufficient, where

sensor measurement (z) and measurement matrix (H) appear to be

zTIMU =
[

ωx ωy ωz

]T

HTIMU =
[

O3×4 I3×3

]

.
(6.17)
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In the translational state the prediction model and measurement vector are used inde-

pendently in each of 3 dimensions has been shown in (6.13) and (6.16) accordingly.

It has long been remarked in the literature that since its dynamical model is unobservable,

the associated Kalman Filter of this “IMU-only” system does not guarantee better per-

formance than direct integration. Of course, the naive assumption of white noise and the

likelihood of an inaccurate initial error covariance matrix add to the accumulation of error.

6.4 Performance Evaluation

6.4.1 Experiment Setup

We have evaluated these estimators experimentally on a version of RHex (50 cm x 20

cm x 30 cm) pictured in Figure 2.5, incorporating the required sensors which include: the

customized leg pose sensor (delivering full body pose) detailed in Section 4.1.1, a 3 DOF

rate gyro (by three 1 DOF MEMS gyro ADXRS300 from Analog Device, delivering angular

velocity) and a 12 DOF accelerometer (by eight 2 DOF MEMS accelerometer ADXL210

from Analog Device, delivering linear/angular acceleration). In principle, the advanced

IMU can play the role of a complete inertial sensor, delivering three components of body

state (linear and angular acceleration as well as angular velocity) without the need for a

gyro as long as the “sensor simplex” satisfies the volume property introduced in Section

5.3. While RHex’s dimensions permit a sensor arrangement that formally satisfies this

requirement, we detail in Section 5.3.2 how the robot’s relatively small body constrains the

numerical conditioning of the resulting regression problem severely enough to preclude the

use of angular velocity estimates so derived. Consequently, we find it essential to use the

rate gyro data included in the IMU package.

To assess performance improvements resulting from the fusion of leg pose and IMU

data, we have run RHex under the GTMS detailed in Section 4.2, the same system we use

to evaluate the body pose estimation by leg configuration sensor detailed in Chapter 4.

This yields another set of 12 DOF body state (6 DOF from position measurement and 6

DOF from their derivatives) for comparison. We quantify performance by presenting the

standard RMS error given in (4.6) which we redisplay here:

fRMSE(d, d̂) :=

√

(
∣

∣

∣

∣

∣

∣
d− d̂

∣

∣

∣

∣

∣

∣

2

2
/N)

where d = (d1, ...,dN ) and di := (rx, ry, rz, α, β, γ)i represents the configuration trajectory

with length N from the GTMS, while d̂ denotes the corresponding configuration trajectory

estimate output from the algorithm.

The common sensor data for all models and associated GTMS output is recorded over

the course of 2-meter long experimental runs and then processed offline to assess model

performance. RHex’s relatively constrained kinematics precludes the exercise of its yaw
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Table 6.1: Empirical Phase Relations in RHex Jogging Gait

Phases in one complete stride

Phases Average time (ms) Percentage of time (%)

mean (std) mean (std)

Tripod Stance 96.1 (5.9) 44.4 (2.7)

Liftoff Transient 29.0 (4.9) 13.4 (2.3)

Aerial 55.2 (6.6) 25.5 (3.0)

Touchdown Transient 36.0 (5.5) 16.7 (2.6)

Total 216.3 (2.3) 100.0

degree of freedom, barring intentional excitation of slipping motion on particular toes such

as would be required for turning. In consequence, because turns are difficult to execute

repeatably under the current open loop gait controller, we perform straight-line experimen-

tal runs on flat terrain. This simplified evaluation protocol avoids the need for another

(complex and necessarily empirical) model that describes turning. Similarly, since we are

only concerned with stable gaits in this paper, we analyze data gathered only during steady

state conditions following the transient from standstill to exclude irregular model switching

sequences and the attendant model errors that would not be captured well within the EKF’s

Gaussian noise framework. Table 6.1 summarizes RHex’s absolute and relative phase timing

measured at 1 KHz averaged over 10 experimental runs, providing a feel for how quickly the

phases switch and how many data points are available in each phase. Individual leg strain

measurements are used to estimate the constituent leg touchdown and liftoff times. The

small variation of total time demonstrates the overall reliability of the steady state stride

excited by the Buehler clock detailed in Section 6.1, whereas the larger relative variations of

each phase suggest the imperfections in the gait stability that result from this feedforward

control scheme.

6.4.2 Performance on the Rotational State

Besides the performance of three baseline systems—leg pose sensor only (a), IMU with

directly integration only (b), and IMU with EKF (c, GTIMU +TTIMU +ATIMU)—we would

like to compare three different fusion scenarios where models for the tripod stance phase

(G), the transient phase (T), and the aerial phase (A) are selected separately:

• (D), GAIMU +TAIMU +AAIMU — advanced IMU with EKF in all three phases, fusion

of angular velocity/acceleration data

• (E), GTIMU+LPS +TTIMU +ATIMU — case (c) plus measurement from leg pose sensor

in tripod stance phase, fusion of angular velocity and orientation data
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• (F), GAIMU+LPS+TAIMU +AAIMU — case (D) plus measurement from leg pose sensor

in tripod stance phase, fusion among angular velocity/acceleration and orientation

data

Table 6.22 lists the statistical results (mean and standard deviation from 10 experimental

runs) of the RMS error between the data from output of the algorithm and that from GTMS

for all 6 rotational states, including body orientation in pitch (α), roll (β), yaw (γ), and

their derivatives (α̇, β̇, and γ̇). Our major observations can be summarized as follows:

• Leg pose sensor (a) has good orientation estimation in the tripod stance phase detailed

in Section 4.3.4; however, its performance for overall jogging locomotion is poor due to

the lack of sensor information in the remaining three phases. This poor performance

occurs when the state information is computed from either an incorrect model or a

poor estimate of the take off velocity. This can be observed by the good data match to

the GTMS between triangles (/ .), denoting the tripod stance phase. In the remaining

phases one can observe a bad estimation curve as shown in Figure 6.2.

• The similar performance of the IMU with direct integration (b) and with KF (c) under

the same sensor source (angular velocity) validate the claim made in Section 6.3.4.

• With one more sensor (angular acceleration) fedback into EKF helping to “smooth”

data, the performance of angular velocity in case (D) is better than that of the original

case (c). We do not see much difference in the orientation state between cases (c)

and (D), probably due to the fact that the estimation is dominated by the sensor

measurement of angular velocity, from the same source.

• With the help from the leg pose sensor in cases (E)(F) during tripod stance phase

acting as a “recalibration” mechanism to reset drift in the IMU, the final observable

system has much better and bounded estimation in orientation state than the orig-

inal systems (c)(D). Similarly, we do not see much difference in the velocity state

between cases (c) and (E), probably due to the same reason—estimation of the state

is dominated by the sensor measurement of angular velocity, from the same source.

• Even though the velocity performance in case (F) is not as promising as in case (D)

due to the effect of measurement from leg pose sensor, the ultimate system (F) with

sensor feedback in all states delivers the most balanced estimation.

• Despite the algorithm’s capability of fusion in the yaw state, RHex’s mechanism con-

straints precludes the yaw motion, causing the implemented leg pose sensor to lack

sensitivity in the yaw direction. Therefore, γ and its derivative γ̇ in cases (E)(F) are

2Small letters (a), (b), (c) indicates that each state in this system is provided by model with single sensing
source without fusion; on the other hand, capital letters (D), (E), (F) indicates that each state has at least
two sensing sources for data fusion.
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Table 6.2: RMS Error of Rotational Body State Estimation according to Leg Pose Sen-

sor/IMU alone and Different Fusion Algorithms/Models detailed in Section 6.3.4 and Sec-

tion 6.3.2

Model Type Body State - Angular Velocity Body State - Orientation

α̇ β̇ γ̇ α β γ

(deg/s) (deg/s) (deg/s) (deg) (deg) (deg)

mean mean mean mean mean mean

(std) (std) (std) (std) (std) (std)

a Leg Pose Sensor 43.41 74.34 N/A 1.65 5.30 N/A

(6.47) (6.35) N/A (0.29) (0.58) N/A

b IMU (direct integration) 16.17 41.26 9.07 1.40 2.31 1.17

(4.05) (7.73) (1.70) (0.80) (0.73) (0.59)

c IMU (with EKF) 16.21 41.24 9.07 1.42 2.38 1.09

(4.06) (7.75) (1.66) (0.79) (0.79) (0.56)

D GAIMU +TAIMU +AAIMU 14.65 34.19 8.43 1.47 2.32 1.19

(3.88) (7.22) (1.53) (0.82) (0.73) (0.60)

E GT IMU+LP S +TT IMU +AT IMU 16.52 41.24 9.07 0.96 1.71 1.09

(4.40) (7.78) (1.66) (0.21) (0.49) (0.56)

F GAIMU+LP S +TAIMU +AAIMU 15.32 37.07 8.43 0.96 1.75 1.19

(3.84) (7.52) (1.53) (0.20) (0.48) (0.60)

directly obtained from IMU measurements, as in cases (c)(D), without fusion with leg

pose sensor.

• Figure 6.2 also shows the typical situation of the IMU only system—inconsistent

drifting in the orientation state in each experimental run due to blind integration3,

which can also be checked by larger standard deviation in cases (c)(D) than in cases

(E)(F) with support of the leg pose sensor.

6.4.3 Performance on the Translational State

As can be seen gyro acts as the major sensing source for the rotational state, which

directly yields the deployment of constant velocity model in á priori estimates (like cases

(c)(D) in Section 6.4.2). Similarly, accelerometer acts as the dominant player in the transla-

tional measurement, leading us to adopt a constant acceleration model in á priori estimates

in (6.5). At the same time, the ballistic model widely used in free drop motion (aerial phase)

implies that the “constant velocity model” (no external force) may also be a good candi-

3In this experiment set, pitch and yaw has obvious drift but roll seems to track well.

90



1 1.5 2 2.5 3
−10

0

10

1 1.5 2 2.5 3

−10

0

10

1 1.5 2 2.5 3

−5

0

5

PSfrag replacements

α
(d

eg
)

β
(d

eg
)

γ
(d

eg
)

t (s)

Figure 6.2: Body orientation (pitch (α), roll (β), and yaw (γ)) measured by GTMS

(dotted line), leg pose sensor (a, dashdot line), fusion algorithm (D, dashed line, ad-

vanced IMU with EKF, GAIMU + TAIMU + AAIMU), and fusion algorithm (F, solid line,

advanced IMU with EKF with leg pose sensor feedback during tripod stance phase,

GAIMU+LPS +TAIMU +AAIMU) according to Table 6.2. The plot of (b)(c) and (E) are omit-

ted since their performance in orientation are similar to (D) and (F) accordingly. RHex’s

mechanism constraints precluding yaw motion yields no yaw reading in the leg pose sen-

sor (dashdot line), so the state of yaw from fusion algorithm (E)(F) are directly adopted

from (c)(D) accordingly (magenta linea are the same as dashed line). The interval between

triangles (/ .) denotes the tripod stance phase determined by leg pose sensor.

date to estimate COM locomotion. Thus, we would like to evaluate both models in all three

phases—tripod stance, aerial, and transient—where the constant velocity model in vertical

direction during aerial phase will import gravity externally to simulate ballistic motion. In

addition, constant velocity model during tripod stance phase will cope with IMU measure-

ment externally (u) (hereafter referred as the IMU integration model, meaning the external

forces can be roughly captured by the IMU) with only the leg pose sensor as the feedback

measurement (zLPS). Therefore, in addition to the performance of the three baseline cases,

there exists eight different scenarios generated by the combination of two different models

in each of three different phases (23 = 8)—constant acceleration model (GIMU+LPS) with

both sensors for feedback measurement (using HIMU+LPS shown in (6.16)) and IMU integra-

tion model (Gext) with leg pose sensor as feedback (HLPS) in tripod stance phase, constant

acceleration model (Aacl) and ballistic model (Abal) both with IMU as feedback (HIMU) in

aerial phase, and constant acceleration and velocity models (Tacl/Tvel) both with IMU as
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feedback (HIMU) in transient phase. In the following discussion, these 8 fusion methods

with different models are numbered from (D) to (K) as the reference index according to

the list in Table 6.3. Unlike the rotational state with at least two sensor measurements in

all phases for data fusion, the translational state processes data fusion only in the tripod

stance phase while the remaining phases are estimated by one sensor data (accelerometer)

smoothed by the KF.

Figure 6.3 plots COM displacement from some output of algorithm and GTMS (green

dot) and the result of various estimation algorithms presented here for a typical experiment.

Table 6.3 lists the statistical results (mean and standard deviation from 10 experimental

runs) of RMS error between data from output of the various algorithms and that from

GTMS for all 6 DOF translational body states, including COM displacement in lateral

(rx), fore/aft (ry), vertical (rz) directions, and their derivatives (ṙx, ṙy, and ṙz). Our major

observations can be summarized as follows:

• Figure 6.3 shows that the resultant state computation from the leg pose sensor (blue

dash-dot line) is accurate in displacement but relatively poor in velocity derived from a

noisy derivative process from displacement and orientation data. In contrast, the IMU

(cyan dash line) performs oppositely—good in velocity4 (especially in rx), but very

poor in displacement derived from a noisy double integration process possibly with

accumulated error. Dramatically different characteristics between these two sensors

serves as the fundamental motivation for fusing sensor data for better state estimation.

Table 6.3 also demonstrates the better performance of the leg pose sensor in the

displacement state. Although the IMU provides accurate tracking of the velocity state

as seen in Figure 6.3, small tracking errors seem are exasperated by the integration

over time, resulting in worse RMS error as shown in table. Never-the-less, this still

suggests that proper “recalibration” of the IMU data can reset the drift resulting in

better velocity estimation.

• It is understandable that the Kalman Filter does not guarantee better performance

in every aspect since it “blends” the performance of the prediction model with that

of the true measurement correction based on unrealistic assumptions of white noises

and hard-to-judge model covariance as well as it needs time to go through transient

till stabilization. It is even more of a challenge to use EKF for locomotion that

requires hybrid models performing in sequence with fast switching. In this case the

performance is determined by many factors—not only by the standard concerns about

selections of models, types of measurement feedback, and assumptions of KF detailed

in Section 6.3.1, but also by the time required to pass transient stage, as well as by the

flow of state and model covariance passing through different phases. Nevertheless, the

Kalman Filter still perform robustly and is able to deliver better estimates for most

4Velocity can be identified by slope or high frequency components in the plot of displacement or orienta-
tion v.s. time.
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Table 6.3: RMS Error of Translational Body State Estimation according to Leg Pose Sen-

sor/IMU alone and Different Fusion Algorithms/Models detailed in Section 6.3.4 and Section

6.3.3

Model Type Body State - COM Velocity

COM Velocity COM displacement

ṙx ṙy ṙz rx ry rz

(cm/s) (cm/s) (cm/s) (cm) (cm) (cm)

mean mean mean mean mean mean

(std) (std) (std) (std) (std) (std)

a Leg Pose Sensor 21.84 17.39 14.88 4.16 5.42 0.82

(1.75) (4.30) (1.63) (3.52) (3.36) (0.14)

b IMU (direct integration) 30.72 20.29 10.30 22.33 16.10 5.00

(19.44) (15.64) (3.23) (14.26) (14.39) (3.95)

c IMU (with KF) 32.29 20.46 10.60 23.60 16.14 5.25

(21.10) (15.32) (3.30) (14.80) (14.18) (4.00)

D GIMU+LP S +Tacl +Aacl 10.48 7.41 9.83 4.74 5.85 1.10

(3.74) (2.41) (3.23) (3.17) (3.74) (0.41)

E GIMU+LP S +Tacl +Abal 9.60 7.36 9.80 6.32 5.26 1.35

(2.65) (2.63) (3.25) (3.07) (3.78) (0.54)

F GIMU+LP S +Tvel +Aacl 17.83 8.30 15.72 7.15 5.82 3.07

(8.75) (2.19) (3.12) (8.01) (3.40) (0.84)

G GIMU+LP S +Tvel +Abal 15.53 7.54 20.03 7.44 5.07 4.77

(8.16) (1.88) (3.37) (7.61) (3.44) (1.06)

H Gext +Tacl +Aacl 29.30 14.32 20.85 4.36 5.29 1.79

(4.38) (2.68) (2.96) (2.97) (3.30) (0.18)

I Gext +Tacl +Abal 29.17 14.12 19.79 4.47 5.29 1.72

(4.32) (2.60) (2.94) (3.03) (3.31) (0.16)

J Gext +Tvel +Aacl 27.20 14.18 15.83 3.95 5.32 1.38

(3.97) (2.62) (2.60) (2.27) (3.31) (0.14)

K Gext +Tvel +Abal 27.07 14.00 15.03 4.06 5.33 1.32

(3.91) (2.52) (2.53) (2.33) (3.31) (0.13)

states as shown in Table 6.3 and Figure 6.3. One way to solve this problem is to use

Interacting Multiple Model (IMM) technology, to be introduced in Section 6.5, which

computes multimodels simultaneously and mixes models’ outputs based on a weight

determined by error covariance. While this solves the problem of discontinuity, some

downside arises—first, when empirical operation the robot performs “hard” (quick)
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switching between different modes, the algorithm yields a longer “transient” time

since the mode change is determined by the the slow and smooth change of the value

of error covariance; second, the computational power required to compute all models

in all situations becomes a real problem if the “model bank” is large unless there is a

second algorithm to determine the on/off of models. Results of fusion algorithm from

cases (D) to (K), cases (D) and (E) show the best performance and also strong reveal

the merit of sensor fusion.

• Better performance is obtained in case (D) (magenta solid line shown in Figure 6.3)

by adopting a constant acceleration model with IMU feedback in all three phases

consistently, and with extra leg pose sensor feedback in tripod stance phase as “recal-

ibration.” This reveals the importance of the flow of the state and covariance matrix.

The EKF continuously delivers estimates based on all previous weighted measures.

Therefore, in the hybrid system when we change model or feedback structure by a

“hard switch” from the previous one to the current one we will introduce disconti-

nuity between states since the new estimates will suffer sudden changes of structure

and the EKF needs to go through a transient phase until the filter converges. In this

case, two important issues arise: first, the transient time to stabilize the estimation

process in new model needs to be short enough so the estimates can begin to deliver

accurate state predictions for some period of time in this “mode” (or “phase” in our

terminology) before the robot switches to the next mode; second, changing feedback

measurements will significantly change the structure of the EKF, resulting in longer

transient times. Thus, choosing a good model in a specific phase which is not con-

sistent with the remaining models may not result in better overall performance since

better estimates delivered in the shorter stable period are deteriorated by bad esti-

mates delivered in the longer transient time. Thus, putting efforts on choosing a better

model suitable for a specified mode/phase may not be an obvious better decision.

• Similar performance between constant acceleration model in case (D) and ballistic

model in case (E) in aerial phase (also (F) to (G), (H) to (I), and (J) to (K)) is

expectable since the measurement of acceleration should show “ballistic flight” in the

aerial phase if the sensor works correctly. This comparison can also be used to check

quality of sensor and conditions of installation and calibration.

• Using the IMU as external input in cases (H)(I)(J)(K) turns out to be a bad choice

due to following reasons: First, bad velocity estimation confirms that the mechanism

of the KF weights more and more on the measurement feedback (i.e. the leg pose

sensor) with time propagation, resulting in the decreasing contribution from the IMU.

Second, the different characteristics in the models causes huge discontinuities of state

estimates during model switch, resulting in a longer transient time to stabilize. One

of the outputs in this group (case (I)) plotted in Figure 6.3 (black dot line) reveals
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Figure 6.3: Translational COM displacement (lateral (rx), fore/aft (ry), and vertical (rz))

measured by GTMS (dotted line), leg pose sensor (a, dashdot line), IMU with KF (c, dashed

line), and fusion algorithm (D, solid line, GIMU+LPS + Tacl + Aacl). Plot of IMU directly

integration (b), fusion algorithm (E), and fusion algorithm (H) are omitted due to their

similar performance to (c), (D), and (I) accordingly. Plot showing the difference due to

model change in the transient phase ((F)(G) to (D)(E), (J)(K) to (H)(I)) are also omitted

to reduce the complexity of the figure. The interval between triangles (/ .) denotes the

tripod stance phase determined by leg pose sensor.

this phenomenon clearly.

• Better performance in cases (D)(E) than in cases (F)(G) indicates the existence of

force interaction to the ground during the transient phase, since the constant velocity

model which impedes the flow of the acceleration state in á priori estimate causes

longer transient time.

Generally speaking, the system with constant acceleration models in all four phases and

with all available sensors for feedback has the best and most balanced performance.

6.5 Context-based State Estimation

From the beginning of this chapter until the previous section we explain how to develop a

body state estimator on a hexapod robot within dynamical gaits (i.e. jogging locomotion)

by fusing the data from the leg pose sensor and the IMU. The algorithm itself is quite

generic, suitable for a wide range of locomotion with periodic modes (ground, transient,

aerial, transient, ground...), jogging, or running fast, and jogging or running with or without
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turning simultaneously. However, as we mentioned before, using the leg sensor to make the

system stable (observable) requires time and effort to develop the leg sensory system. For a

robot like RHex it is a difficult task since we need to get leg configuration from continuous-

compliant members as well as to transfer sensory data back to the robot body by wireless

communication. This task may become easier in the future robots with high DOF rigid

legs can inject enough energy into the legs to use them as springs. Limited power density

in motors, however, remains a difficult problem to solve. Thus, the alternative approach is

to deal with the model and algorithm selections—focusing on software instead of hardware.

This may be a low-cost solution if considering implementation in large volumes.

The standard technology to use single (minimum) sensor to estimate the locomotion

with different modes is interacting multiple models (IMM) [May79,CA78]. It runs all the

possible models simultaneously and judges the accuracy of models by an error covariance

matrix between sensor measures and estimated state by models based on the fact that

the correct model should provide better estimates. In our case for state estimation with

multimodes, the typical choice of sensor is the IMU due to its suitability and accessability.

IMM is simple and effective; however, it also comes with a couple of drawbacks. First, it

requires powerful computation ability, especially the bank of modes is large. Second, model

accuracy is very important since it not only determines the state but also uses its error

covariance to judge its effectiveness, especially for the unobservable systems in our case.

The selection of model for each mode is strongly dependent on the robot locomotion which

is difficult to justify, so our work is focused on how to switch the modes more accurately.

We introduce the “context-based” body state estimation5 for a hexapod robot executing

the same jogging gait in steady state on level terrain. The approach consists of identifying

the robot’s mode of operation (hybrid system) by classifying the output of onboard sensors

into mode-specific contexts. For example, consider the estimation for the vertical state,

the acceleration during ground phase (like a SLIP system) and aerial phase (free drop) has

significantly different ranges; thus, we can set the threshold on the vertical acceleration to

help determine the correct modes and switch the models accordingly. The other context we

have tried is leg touchdown information, actually providing correct timing to switch modes.

The “context” provides better timing for switching, and it is also utilized to switch on/off

the modes in order to save computation power.

This algorithm is still under development by our colleagues at CMU, but the initial

results can be summarized as follows. Six-dimensional state are currently modeled sepa-

rately with 1 DOF simple data driven models, where the parameters are fit particularly to

the specific motion. The states in the vertical direction is modeled as SLIP and ballistic

models (similar to the motion of pogostick). The performance of estimation by using the

leg touchdown sensor as a context is better than that using the accelerometer [SRCL05],

but the result is still 50% worse than that utilizing sensor fusion technology, as shown in

5In collaboration with Sarjoun Skaff and Alfred Rizzi at Carnegie Mellon University (CMU).
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Section 6.4. Two major reasons for this are: first, the system is unobservable which implies

the data drifting problem. Second, by using only two modes (ground and aerial), ignores

the transient modes which consume around 30% of time in each cycle. Furthermore, it un-

deruses the available information of individual leg touchdown. Pitch, roll, yaw, and COM

lateral state are all modeled by simple spring mass systems with periods equivalent to the

oscillation of locomotion. Fore/aft state is modeled as a 1st order system since the velocity

is nearly constant.

The performance of state estimation is strongly coupled to a specific motion since the

parameters of models are empirically tuned. For example, jogging locomotion with different

periods should be modeled as different SLIPs with different parameters. Thus, it may be

necessary to build a large “model bank” in order to cover a wide range of locomotion.

From this point of view, using sensor fusion to make a system observable is a more general

approach for this type of state estimation.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

This thesis tackles the open problem of building a sensory system for a legged robot with

a wide range of motion and various behaviors. The work in this thesis is unique in that it is

the first known time this data has been generated for a legged robotic system. The work in

this thesis details the development process of the sensory system, complete from the high

level conceptual architecture to the low level engineering implementation. This framework

concludes that the desired sensing information in a hexapod robot, to be utilized in a

feedback controller toward the development of dynamic behaviors, should include full body

states on center of mass (COM), foot touchdown information, leg configuration, ground

reaction force, and body inertia forces and torques. In this work, we have implemented

three different kinds of sensors, including eight 2-axis MEMS accelerometers, three 1-axis

MEMS gyroscopes, and six or twelve strain gauges, depending on the use of 4-bar or half-

circle legs, on the experimental platform, hexapod RHex [BSK02], and have evaluated the

performance of the algorithms on real robot systems.

We introduce a novel approach to implement strain gauges together with simple data

driven phenomenological polynomial models to simultaneously deliver information of leg

touchdown, leg configuration, and ground reaction force suitable for legged robots with

compliant legs. Leg configuration of the 1 degree of freedom (DOF) 4-bar leg [Moo01]

on RHex [SBK01] is successfully estimated by one strain gauge, through linear mapping

both on the benchtop experimental apparatus and real robot operation, where the foot

touchdown information is also successfully delivered by an empirically set threshold on the

leg configuration. Using a high speed visual ground truth measurement system (GTMS),

we have shown that the leg configuration model used to interpret the strain data achieves

very high accuracy in realistic operating conditions [LKK05a,LKK03]—e.g., effective length

errors of less than 2%. Leg configuration and ground reaction force of the 2-DOF half-circle

leg is also successfully obtained by two strain gauges through linear-quadratic mapping on

the benchtop experimental table. The model evaluation on the operating robot is beyond
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the scope of this thesis due to the limited bandwidth of wireless communication, LegNet

[Kom05], between legs and the robot body.

We develop a full body pose estimator for a walking hexapod robot based on the kine-

matic configuration of its legs structured in a two layer hierarchy. The lower layer relates leg

configuration to body pose within a single stance while the higher layer recursively composes

consecutive single stance measurements to achieve complete legged odometry—continuous

pose computation across multiple steps [LKK05a,LKK04]. We have implemented this algo-

rithm on the robot RHex utilizing strain measurements of its 4-bar legs communicated over

a wireless communications network described above1. Using a separate conventional frame

rate visual GTMS we have evaluated the performance of the resulting low level single stance

pose estimator and the high level legged odometry system at various speeds and conditions

of surface friction. The body pose estimator is shown to perform well at all speeds over

normal ground conditions—achieving, for example, five times more accurate legged odom-

etry than computed from averaged open loop distance-per-stride estimates. The estimator

continues to function well over a variety of ground conditions, with the onset of significant

performance degradation on the most slippery surfaces, like soaped plastic, whose coefficient

of friction is less than a third that of normal linoleum. This pose computation algorithm

cannot function if the operating regime includes an aerial phase as is typical of RHex’s most

useful dynamical gaits [Sar02]. To remedy this shortcoming, this thesis has introduced an-

other sensor suite—the inertial measurement unit (IMU), including linear accelerometers

and rotational rate gyroscopes, to complement the leg kinematic configuration sensor in-

troduced here. This multiple array of sensor modalities not only allows us to perform pose

estimation during aerial phases but also to generalize the estimation to full 12-DOF state

in a wider range of locomotion.

We then introduce a novel 12-axis accelerometer suite theoretically capable of delivering

linear/angular acceleration and angular velocity, fulfilling the idea of “advanced IMU”, by

using the kinematic relationships of rigid body motion without integration or differentiation.

This suite provides additional angular acceleration measurement compared to the traditional

IMU, avoiding the need for gyroscopes and for localization of the accelerometer at the COM

on the robot’s body, and simplifies installation and calibration. The partial state provided

by the advanced IMU not only yields body inertia force and torque information but also

delivers essential sensory feedback for body state estimation. We have implemented this

sensory suite on RHex, and have successfully obtained linear and angular acceleration but

not angular velocity due to its impracticality in the present setting as a result of numerical

ill-conditioning consequent upon the small baseline RHex’s body affords. Therefore, along

with the traditional 3-axis rate gyroscope this 12-axis accelerometer comprises the advanced

IMU that we join in this thesis to our previous leg pose sensor.

We also develop a hybrid full 12-DOF body state estimator for a hexapod robot execut-

1Note, in consequence of RHex’s constrained kinematics, as explained in Section 4.3, we have not exercised
its yaw degree of freedom in this study.
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ing a steady jogging gait on level terrain with a significant aerial phase [LKK05c,LKK05b].

We use a repeating sequence of continuous time dynamical models—three distinct models in

four successively repeating phases: tripod stance phase, liftoff transient phase, aerial phase,

and touchdown transient phase—that are switched in and out of an Extended Kalman Filter

to fuse measurements from a low-cost MEMS-based advanced IMU and a novel leg-strain-

based body pose estimator installed on a copy of the robot RHex. The estimator is presently

implemented offline on data collected by the above sensors in order to compare the perfor-

mance of different models in the filter. The proper fusion of the data yields state estimates

that agree with measurements taken by an offboard GTMS, whereas, in contrast, neither

sensing modality yields comparable accuracy when used in isolation. The associated com-

putational costs are not excessive and the algorithm is now ready for online implementation

on RHex in conjunction with more aggressive state based feedback controllers [Sar02,SK03].

The sensor suite is quite generic, and we are proceeding with an implementation of this algo-

rithm upon other legged running machines as well. Our results corroborate the notion that

two distinct sensory modalities with complementary strengths and weaknesses should yield

better state estimates in combination than either can deliver alone. The leg pose sensor

cannot function in flight but delivers reliable position information during stance—when the

legs do not slip. However velocity data can only be derived from numerical differentiation

which is bound to inject noise. In contrast, the IMU operates continually through flight and

stance, and offers reliable velocity information—so long as the gyroscopes do not saturate.

Nevertheless, position data can only be derived from numerical integration and an increas-

ing drift arising from integration error is likely. For both translational and rotational states,

performance is significantly increased when both sensor modalities are fused appropriately.

Using the “grounded” leg pose sensor to complement drifting IMU based estimates of pitch

and roll, and to correct COM vertical displacement estimates provides a “recalibration” in

stance that insures bounded estimation errors in the final outputs. IMU integration drift in

the remaining state components can also be mitigated over short distances by this leg-based

“recalibration” but slipping toes will eventually degrade absolute horizontal displacement

estimates in analogy to the well known problems of odometry in wheeled vehicles [LKK03].

To eliminate the drift over longer ranges, we would require such modalities as a global posi-

tioning system (GPS), for COM lateral and fore/aft motion, with a magnetometer, for yaw

motion, or a vision system for absolute localization. In spite of that, these systems that

provides absolute positioning have less impact relating to the robot’s dynamical behavior

and stability.

7.2 Future Work

Equipped with the fusion algorithm we have described, we believe that the combined

leg pose sensor and advanced IMU provide a ready platform for “slow”, i.e. stride-to-stride
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level, real time feedback control of steady state gait parameters. Our near term plans are

to begin experimental work of this kind. Before these sensors can provide state estimates

suitable for “fast”, within-stride, control of badly perturbed transient body states, there

are two additional improvements that are needed.

First, we will need to develop more physically realistic dynamical models of the transient

states, a simple example being the spring loaded inverted pendulum (SLIP) model for the

tripod stance phase [AKH04]. The fundamental questions remains—can we find a suitable

SLIP model to deliver better state estimation which we will use as sensory feedback for

the controller? Or do we need to develop the feedback controller first to “anchor” the

robot behavior to the SLIP template? Our initial experience of fitting the robot’s current

jogging behavior to the SLIP reveals the following clues regarding how close the current

behavior is to the SLIP model and how we might get closer. First, the robot operates in

full 6-dimensional space involving ±10 deg pitch and ±5 roll motion due to unbalanced and

unsynchronized spring compression among three touchdown legs. These effects, however,

are ignored by the 3-dimensional SLIP in sagittal plane [AKH04] or the 3-space SLIP with

point mass. Thus, how to “project” the 6-dimensional motion into 3-dimensional SLIP

motion is a noneligible issue. Second, the question lies on “how to inject energy into this

lossy system correctly so that it will behave as an energy-conservative system like SLIP.” In

RHex’s case, the direction where energy is injected, the motor power, is not the direction

where energy is lost, the leg damping, but at least one can use energy injection in as a way

to help recover energy loss. For example, the forward speed of SLIP is entirely determined

by dynamics but in RHex it is determined by the constant-speed leg swing motion according

to the Buehler Clock. Thus, we are likely able to adjust the leg swing pattern to match the

SLIP motion. Furthermore, SLIP provides a good template for the robot to start with due

to its simplicity and physical-based property. In addition to models in tripod stance phase,

we are convinced that there is a need for more complex combinations of physically motivated

ground contact models during the touchdown and liftoff transient phases to improve state

estimation and reduce transient in each phase.

Second improvement requires additional algorithmic means of triggering the hybrid dy-

namics switching protocols that were effected in this thesis only by reference to the leg pose

sensor’s cues. We believe that the interacting multiple model (IMM) approach [SRCL05]

holds significant promise in this context.
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APPENDIX A

Experimental Data Plots

This appendix provides sensory data plots from four typical experimental runs of RHex

within four different gaits (one for each), including jogging, slow walking, medium walking,

and fast walking gaits.

The body state estimator for a robot within a jogging gait developed in Chapter 6 utilizes

all of the available sensory data on RHex, which includes the strain-based leg configuration

sensor shown in Figure A.1, the motor shaft orientation sensor (encoder) shown in Figure

A.2, COM acceleration shown in Figure A.4, body angular acceleration shown in Figure

A.5, and body angular velocity shown in Figure A.6. COM linear acceleration and body

angular acceleration are derived from 12 raw linear accelerations as shown in Figure A.3

measured from the 12-axis accelerometer suite, while angular velocity is delivered by the

MEMS gyroscope sensor. Three dimensional coordinates of three markers detected by the

ground truth measurement system (GTMS) for performance comparison are shown in Figure

A.7.

The body pose estimator for a robot within walking gaits, developed in Chapter 4,

only requires the information of toe coordinates with respect to the COM. In RHex’s case

this can be achieved by utilizing a strain-based leg configuration sensor and motor shaft

orientation sensor (encoder). Thus, two sensory data sources together with data from the

GTMS are also provided in this appendix. These nine plots from three data multipled by

three different walking speeds are shown from Figure A.8 to Figure A.16.
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Figure A.1: Experimental data: leg length (jogging gait); 1: left front leg, 2: left middle

leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.2: Experimental data: leg orientation (jogging gait); 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.3: Experimental data: acceleration from the 12-axis accelerometer suite (in
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body frame, jogging gait); α̈: pitch; β̈: roll; γ̈: yaw
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Figure A.7: Experimental data: GTMS tracking (jogging gait); three curves indicate the

trajectories of three markers installed on RHex shown in Figure 4.5; X,Y,Z here indicate the

absolute GTMS world frame (not the same as world frame) for RHex, which coincides with

the coordinates and uses the orientation of RHex when RHex is standing on the ground

before running
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Figure A.8: Experimental data: leg length (slow walking gait); 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.9: Experimental data: leg orientation (slow walking gait); 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg

112



20

40

60

80

100

120

35404550

3D tracking in GTMS            

X (cm)

Z
 (

cm
)

Y (cm)

20 40 60 80 100 120

30

35

40

45

50

55

X (cm)

3D tracking in GTMS (top view) 

Y
 (

cm
)

20 40 60 80 100 120
22
24
26
28

X (cm)

3D tracking in GTMS (side view)

Z
 (

cm
)

Figure A.10: Experimental data: GTMS tracking (slow walking gait); three curves indicate

the trajectories of three markers installed on RHex shown in Figure 4.5; X,Y,Z here indicate

the absolute GTMS world frame (not the same as world frame) for RHex, which coincides

with the coordinates and uses the orientation of RHex when RHex is standing on the ground

before running
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Figure A.11: Experimental data (medium walking gait): leg length; 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.12: Experimental data (medium walking gait): leg orientation; 1: left front leg,

2: left middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.13: Experimental data: GTMS tracking (medium walking gait); three curves

indicate the trajectories of three markers installed on RHex shown in Figure 4.5; X,Y,Z here

indicate the absolute GTMS world frame (not the same as world frame) for RHex, which

coincides with the coordinates and uses the orientation of RHex when RHex is standing on

the ground before running
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Figure A.14: Experimental data: leg length (fast walking gait); 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.15: Experimental data: leg orientation (fast walking gait); 1: left front leg, 2: left

middle leg; 3: left hind leg; 4: right front leg; 5: right middle leg; 6: right hind leg
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Figure A.16: Experimental data: GTMS tracking (fast walking gait); three curves indicate

the trajectories of three markers installed on RHex shown in Figure 4.5; X,Y,Z here indicate

the absolute GTMS world frame (not the same as world frame) for RHex, which coincides

with the coordinates and uses the orientation of RHex when RHex is standing on the ground

before running
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APPENDIX B

Ground Compliance Identification by Leg Sensor

In addition to the body pose estimation, one of the applications of the strain-based

sensory system is ground compliance identification which is followed by the fundamental

idea that a robot with compliant legs performs different ground reaction patterns while

running on grounds with different compliances. This capability allows the robot to operate

in optimized tuned gaits regarding speed or energy efficiency for each different ground

compliant level.

B.1 Basic Idea

Figure B.1 depicts the basic idea how the leg sensor can identify the ground compliance.

Consider modeling the robot as a Spring Loaded Inverted Pendulum (SLIP) system where

compliant legs shown in (a) acts as the spring shown in (b); by adding the model of ground

with spring and damper shown in (c), the stiffness of this “resultant” spring in the final SLIP

system varies depending on the spring of the ground, which results in different compression

pattern of this resultant system. The leg sensor measures a partial compression pattern of

the combined spring within a fixed ratio, so it is able to be scaled to represent the total

compression pattern for the estimation.

Different ground conditions in the “resultant” SLIP system yield different compression

patterns and causes the robot to operate in different gaits. We observe hexapod RHex

yielding different compression patterns in legs even within the same parameterized walking

gait but only with a different cycle time, tc, shown in Appendix D. This increases the

ability of identification by crosschecking two different grounds via multi pairs of patterns

generated by different gaits. In addition, the different compression patterns in front, middle,

and back legs in the actual robot due to a more complicate dynamic response is also helpful

for crosschecking. As a result, 3n different patterns will be generated for comparison if the

robot performs with n different gaits in both kinds of grounds.
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Figure B.1: Sketch describing the idea of ground compliance identification by the leg sensor

B.2 Initial Experiment Results

In order to execute this idea on a physically operating robot, we operate the robot with

4 different kinds of gaits (slow walking, medium walking, fast walking, and jogging gait) on

4 different kinds of grounds (hard ground, carpet, grass, and wood chips), and record the

data from the leg sensor. After basic data processing (median filter to filter out outliers

and hamming windows to smooth the curve), the initial data is shown in Figure B.2, Figure

B.3, Figure B.4, and Figure B.5 according to the grounds listed above. In each experiment

trial three different patterns from front, middle, and back legs belonged to the same tripod

are depicted. The horizontal axis shows time fixed interval for all graphs, while the vertical

axis depicts leg length in unit of centimeter.

It is clear that each plot may have different “leg compression cycles”, while each cycle

is usually represented as a single large compression group in graphs. For example, 5 cycles

via slow walking gait, 6 cycles via medium walking gait, 8 cycles via fast walking gait, and

9 cycles via jogging gait. The jogging gait has the fastest forward speed among all due to

its shortest cycling time as well as its flight phase. Comparing the graphs with the same

ground but with different gaits, it’s obvious that every gait has it’s own unique pattern; and

even within the same gait, different legs (front, middle, or back) have different patterns.

As a result, 12 different patterns can be generated as the comparison basis if the robot is

operated robot with 4 gaits.

Comparing the graphs of a specific leg with the same gait but with different grounds

does not show straight-forward differences, but reveals subtle changes that serve as the

basis for comparison. Among 4 different gaits, it seems that the most significant difference

in patterns appears between the slow and medium walking gaits among different grounds.

This is because the robot performs multiple small vibrations during locomotion which con-

tinuously cause interaction with the surface layer of ground, which determines the shape of
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the compression curves. For the fast walking gait and jogging gait, the robot motion gener-

ates a large single compression curve on legs, which is more like the SLIP model. However,

that kind of motion performs a big force interaction (big compression), penetrating into the

hard ground under the shallow surface layer of carpet, grass, or wood chips. Meaning that

the influence of models of the shallow surface layer may become insignificant. Therefore,

we can treat these two gaits as actually working with the similar hard ground so that we

are not able to get pattern differences.

B.3 Future Research Procedure

Based on the observation from the graphs shown in Section B.2, extracting special

features from the patterns is the first step. A few candidate features are:

• Number of peaks in one compression cycle

• Time for compression in one compression cycle

• Amplitude of maximum compression

• Ratio of compression timing between peaks in the same cycle

• Ratio of compression amplitudes between peaks in the same cycle

The next step is to use the technique of pattern recognition to check if these features

are able to distinguish data sets among different ground, appearing in different regions in

scatter plots. If the answer is negative, try to extract other features, repeating the process.

The sensor noise may deteriorate the whole work if the noise floor of the sensor is close to

or larger than the differences among patterns resulting from different ground compliance.

This need to be checked after achieving precise experiment results as well as the features

from the data of different experiment trials.
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Figure B.2: Leg compression patterns with different ground conditions (slow walking gait):

(a) on hard ground (b) on carpet (c) on grass (d) on wood chips; F: front leg, M: middle

leg, B: back leg
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Figure B.3: Leg compression patterns with different ground conditions (medium walking

Gait): (a) on hard ground (b) on carpet (c) on grass (d) on wood chips; F: front leg, M:

middle leg, B: back leg
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Figure B.4: Leg compression patterns with different ground conditions (fast walking gait):

(a) on hard ground (b) on carpet (c) on grass (d) on wood chips ; F: front leg, M: middle

leg, B: back leg
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Figure B.5: Leg compression patterns with different ground conditions (jogging gait): (a)

on hard ground (b) on carpet (c) on grass (d) on wood chips ; F: front leg, M: middle leg,

B: back leg
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APPENDIX C

Evaluation of the Ground Reaction Force Model

The basic method for evaluating the ground reaction force model is to measure the

actual ground reaction forces and to compare the force data from the external force sensor

to that from the model output of the leg sensor. Figure C.1 proposes an empirical setup

for this evaluation. In this setup, we let the robot walk/run on level path so that one of the

middle legs strikes on a prepared “force plate” supported by two 3-axis force sensor only,

which records the forces transmitted from the leg to the ground. Ideally, the force measured

by the force sensor and the force measured between toe and the ground would result in a

specific relationship based on the geometrical dimensions. Figure C.2 depicts the free body

diagram (FBD) with all of the force components, which indicates the relation between the

ground reaction forces and the forces from both force sensors as

fn = fn 1 + fn 2

ff = ff 1 + ff 2
(C.1)

which also provides the location of leg touchdown to form the equilibrium equation

r1
r2

=
fn 2
fn 1

. (C.2)

Unlike the leg model based on certain assumptions, the measurement by the force plate will

not be affected by the region of robot operation (either dynamic or quasistatic) since the

measurement is directly taken from the force field.

Data from these two force sensors can be collected by importing raw sensor data into

the customized PC104 stack used in the benchtop experiment table described in Section

3.4. The LED on top of the robot signals the start time for the measurement of the robot

data with the force plate data.

127



RHex


Leg Sensor

Ground


Force Plate

3-axis Force Sensor
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Figure C.2: Free body diagram of the force plate experimental test station: (a) FBD for

the whole system (b) decoupled FBD
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APPENDIX D

Buehler Clock

The open loop control strategy of RHex’s legs for tripod gaits, usually called “Buehler

Clock [SBK01]”, works using 4 parameters: tc, ts, φs and φo shown in Figure D.1. This is

a periodic function of time composed by slow and fast swing phases, denoted by φs and

2π − φs accordingly. The slow swing phase is used for pushing the robot in walking or

running, while the fast swing phase is for quick return to support the continuous pushing

motion in slow swing phase. Both phases are in constant rotation speeds with a 3 order

polynomial as a smoothing function in between. Summed time for both profiles for a single

cycle is defined as tc. In conjunction with ts, defined as the time for a slow swing phase, it

determines the duty factor. Finally, the φo parameter offsets the motion profile of the slow

swing phase with respect to the vertical.

For the walking gait and jogging gait, the six legs have exactly the same parameters in

the Buehler Clock, but are grouped as two tripods synchronized with each other, 1800 out

of phase with the opposite tripod for continuous locomotion. The duration of the “ideal”

double stand, td, when all six legs are in contact with the ground, is determined by the

duty factors of both tripods. Even with only 4 parameters, the robot performs significant

different behaviors via different parameter settings, from slow walking, to energy efficient

jogging, and to high speed running [WLK04].

The gait for turning in place shares the same parameters in the Buehler Clock, having

1800 out of phase between the two tripods. These two tripods rotate in the opposite

direction to initiate toe slippage on some legs to generate the turning motion, which is the

only method due to RHex’s simple 1 rotational DOF per leg mechanism. Thus, this torque-

requiring motion easily results in quick heat-up of motors. Proportional turning is done by

offsetting φ0 in different directions on each side of legs, resulting in a big roll angle during

motion to redistribute the ground reaction force among legs, so that slippage happens easier

on one side of legs. This generates the combination motion of forward and turning similar

to the turning method of automobiles.

Though RHex has a total of only 6 active rotational DOF to generate leg motion, it

is still unclear to us how to excite the “right” behavior, either by designing the “right”
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Figure D.1: Buehler Clock: (a) sketch in leg orientation (b) sketch in phase vs. time

trajectory of the legs or assigning the “right” torque to the joints over time. Different leg

motions significantly effect the pattern of energy storage/release which plays an important

role in determining the dynamic behavior of the robot. Currently most of the gaits are

assigned/tuned with certain open loop leg trajectories by intuition or by a mathematical

optimization procedure without insight from the physics point of view. This is a challenging

problem since this faces a similar situation to my development of state estimation detailed in

Chapter 6, where all procedures are linked in a circular path without an obvious start point

— requiring good behaviors to find good models, but also good models to generate good

behaviors. Another dilemma lies in the question of what the “correct” template is for each

behavior and how to anchor it [FK99]. The simpler the template, the easier it is to control,

but the harder it is to anchor. There is also the possibility of losing certain advantages

inherent to the original more complicate physical system. With these considerations, we

are working toward the goal of a feedback controller to operate robots in stable and desired

behaviors.
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