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Design and Performance
Evaluation of a Bio-Inspired and
Single-Motor-Driven Hexapod
Robot With Dynamical Gaits
Over its lifetime, the hexapedal robot RHex has shown impressive performance. Combin-
ing preflexes with a range of control schemes, various behaviors such as leaping, run-
ning, bounding, as well as running on rough terrain have been exhibited. In order to
better determine the extent to which the passive and mechanical aspects of the design
contribute to performance, a new version of the hexapedal spring-loaded inverted pendu-
lum (SLIP)-based runner with a novel minimal control scheme is developed and tested. A
unique drive mechanism is utilized to allow for operation (including steering) of the robot
with only two motors. The simplified robot operates robustly and it exhibits walking,
SLIP-like running, or high-speed motion profiles depending only on the actuation fre-
quency. In order to better capture the critical nonlinear properties of the robot’s legs, a
more detailed dynamic model termed R2-SLIP is presented. The performance of the robot
is compared to the basic SLIP, the R-SLIP, and this new R2-SLIP model. Furthermore,
these results suggest that, in the future, the R2-SLIP model can be used to tune/improve
the design of the leg compliance and noncircular gears to optimize performance.
[DOI: 10.1115/1.4029975]

1 Introduction

Most ground animals have evolved with agile and robust legs,
allowing them to elegantly and rapidly negotiate uneven terrain.
How animals coordinate their many body joints, however, remains
a mystery. Because it has proven difficult to mimic their amazing
locomotion capabilities, research on legged robotics has taken two
basic approaches: One is to build robots with few active degrees
of freedom (DOFs) and use them to generate animal-like dynamic
locomotion; the other is to build robots with a large number of
DOFs and to explore rough terrain negotiability with quasi-static
locomotion. Perhaps in the near future these two approaches can
be merged, and robots will perform rapid locomotion on natural
terrain just as animals do.

The study of dynamic locomotion of robots was initiated by the
development of monopods in the 1980s [1]. Around the beginning
of the third millennium various dynamical multilegged robots
were developed, examples include the quadruped Scout series
[2,3], quadruped Tekken series [4,5], hexapod Sprawl series
[6–8], hexapod RHex [9–13], EduBot [14,15], and VelociRoACH
[16]. In order to generate dynamic locomotion, these robots have
one common yet important characteristic—compliant components
which allow kinetic energy to be stored and released from the
potential strain energy of the component. These springs help

compensate for the insufficient power density of commercial joint
actuators (i.e., electric motors) and enable the robot to match the
center of mass locomotion characteristics of animals. Researchers
have found that, even though their morphologies vary signifi-
cantly, animals’ dynamic running locomotion in the sagittal plane
can be approximated by a simple mathematical model: the “SLIP”
model [17–20]. Here, the animal’s body is treated as a point mass
and its legs are approximated by a massless linear spring. As a
running “template,” the SLIP model provides a prescriptive con-
trol guidance to the original complex biological or robotic systems
which represent empirical “anchors” by specifying the actuation,
joints, and rigid structures [21]. Thus, in the past few decades, the
success in developing dynamic behavior for legged robots has
commonly been judged by the similarity of the robot’s motion
characteristics to that of the SLIP model. For example, though the
hexapod RHex has only one active rotational DOF per leg, it can
generate SLIP-like jogging behavior through carefully matching
the actuation at the hip joints and the passive compliant legs
[22,23]. In addition, RHex also has good ability to negotiate rough
terrain because of its full-rotation leg reposition strategy. Simi-
larly, the hexapod iSprawl has carefully tuned leg compliances,
and it can be driven by a single motor and generate SLIP-like
locomotion, though without the same ability to clear obstacles [7].

Here, following our initial presentation at Ref. [24], we report
on the complete development of a simple hexapod robot which is
driven by only one motor but which can perform dynamic running
locomotion as well as negotiate rough terrain. The conceptual
design of the robot lies in the intersection of two robots: the
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simple morphology of RHex with bio-inspired tripod gaits [9]; as
well as the single-motor transmission strategy of iSprawl [7]. The
key to this intersected design lies in the use of a noncircular gear
pair in the transmission system, which allows the input and output
gears to have varied speed profiles to create an adequate tripod
running gait using a single-motor input. Besides the driving
motor, the robot also has a small servo motor for turning. Thus,
the robot only has two active DOFs for locomotion, and the con-
trol policy of one turning and one driving DOF on the robot is
identical to most wheeled vehicles. The use of properly tuned
compliant legs, however, allows the mechanism to achieve com-
plex behaviors with low DOFs. In our scenario, we show that a
specialized 2DOF robot that resembles a nonholonomic system is
capable of traversing both flat ground (3DOFs) and rough terrain
(typically described in 3D space, 6DOFs).

It has been shown time and again that in biological systems
there is a tight coupling between the neural (active) and musculo-
skeletal (passive) parts of the body [25,26]. In contrast, a typical
robot design considers the active and passive aspects of the system
separately. First, the electromechanical structure is constructed.
Then a control algorithm is established to force the passive con-
struct to perform in the desired manner. This approach often gives
rise to systems that are rigid, slow, and inefficient. Inspired by
observations in biology, RHex, with its half-circle compliant legs
and task-level open-loop control algorithm, was the first mobility
platform where the passive and active aspects of the system are
considered in tandem for the common goal of producing efficient
and stable locomotion. The “behavioral control” in RHex is not
confined to the software but is also “embedded” into the compo-
nents of the passive body. This holistic approach in behavioral
controller design, which was later successfully demonstrated in
systems such as Sprawl [8] and RiSE [27], is a powerful idea that
we would like to better understand and establish guidelines for.
The single-motor hexapod presented in this paper is another step
in this direction. Here, the authors experimentally investigate how
the generation of excitation in a dynamic locomotion system can
be further embedded into the passive mechanism. With its reduced
number of motors and circuitry, the resulting platform demon-
strates a low-cost version of a RHex-class system which may find
applications in fields spanning entertainment to education. More
importantly, it allows us to study the pros and cons of heavier use
of passive components in behavioral control.

The design of the robot starts with understanding the dynamic
motion of the SLIP model and then expands the morphology of
the monopod to the hexapod structure, which can be operated in
intrinsically robust “tripod posture” (i.e., having three legs stand
on the ground) at any moment by means of the worm and worm
gear pairs and noncircular gear pairs utilized in the transmission
system. The former allows the robot to stand without powering
the motor because of its nonbackdrivable characteristics. The lat-
ter provides the feasibility of setting desired periodic leg speed
profiles and phase offsets, so the proper alternating tripod gait for
dynamic locomotion can be generated.

This intentional mechanical locking of the drive train shifts the
focus of the control of the robot onto the passive dynamics of the
compliant structure. Body compliance can be achieved by either
direct use of a passive spring, by simulating the multi-DOF sys-
tem to act like a spring [28], by mixing the two [29], or by using a
stiffness-tunable passive springy leg [30]. While many compliant
leg designs have been reported, evidence suggests that a nonlinear
stiffness [31] and a rolling contact helps locomotion [32]. Since a
leg with a circular shape has these attributes, is easy to fabricate,
and has a history of use on other robots, it was adopted in the final
robot design.

The locomotion behavior of this robot was then compared to
three reduced-order models: SLIP, the R-SLIP model, and the
new R2-SLIP model. The first is the original design basis of the
robots, and the latter two capture characteristics of the circular leg
including rolling behavior and change of leg stiffness during loco-
motion. The R-SLIP model was previously developed in our lab

and was based on the morphology of the half-circular leg [33].
The R2-SLIP is a revised version of the R-SLIP model with an
additional passive spring; the details of which are described in the
Appendix. Note that though the SLIP model can be set to have
changeable stiffness, it cannot create rolling behavior (forwarding
ground contact point) within its morphology. Although several
new reduced-order models have recently been developed as well
(such as CT-SLIP [34], SLIP-R [35], C-Pod [36], M-SLIP [37]
ASLIP [28], and SLIP-T [38]), they are either at a more abstract
level or fit to some specific form of leg. As a result, the R-SLIP
and R2-SLIP models are adopted for performance comparison
since they originated from the circular leg used on the robot, and
have a similar simple structure as the SLIP. Thus, the use of this
simplified, mechanical robot allows for a focused evaluation of
the role of passive dynamics (specifically leg design) in creating
fast, stable, SLIP-like dynamical running.

The remainder of the paper is organized as follows: Sec. 2
describes the robot design process. Sections 3 and 4 report the
design of the noncircular gear pair and leg, respectively. Section 5
briefly describes the R-SLIP and R2-SLIP models and their
parameter mapping to the robot. Section 6 reports the results of
experimental evaluation, and Sec. 7 concludes the work.

2 Robot Design Process

As mentioned in the introduction, the SLIP model depicted in
Fig. 1(a) is widely used as the sagittal-plane running template of
biological systems. The model has three system parameters:
length of the spring (l); stiffness of the spring (k); and mass (m).
The SLIP model exhibits a set of stable periodic trajectories that
include stance and flight phases.

The dynamics of the SLIP model in stance phase can be repre-
sented as

Fig. 1 The model and the robot. (a) The SLIP model with its
intrinsic parameters, ICs, and motion profile. (b) The robot per-
forms dynamic motion similar to the SLIP model, which
includes a stance phase and a flight phase. (c) The leg motion
profile, which includes a stance phase and an aerial phase.
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€h ¼ 1

l
ðg sinðhÞ � 2 _l _hÞ

€l ¼ l _h2 � k

m
ðl� l0Þ � g cosðhÞ (1)

where l0 and g are the natural length of the spring and gravita-
tional constant. Together with the initial conditions (ICs) given at
the moment of touchdown, the model’s quantitative motion versus
time can be solved numerically. The ICs are represented in states
associated with the mass and leg motion, including landing angle
(b), touchdown speed (vamp), and touchdown angle (a) included
by the touchdown velocity and horizontal line as shown in Fig.
1(a). When the ICs are appropriately chosen, the model keeps
moving forward while the spring compresses and releases, and at
a certain moment the model takes off and starts its flight phase
[20]. The dynamics of the SLIP model in flight phase are ballistic
and are affected by gravity alone. After the ballistic flight, the
SLIP model with the same landing angle touches down on
the ground again and starts its next stance phase. The motion of
the model is alternated by these two phases as shown in Fig. 1(a).

Equation (1) reveals that spring dynamics are affected by three
factors: (i) centrifugal force; (ii) elasticity of the leg; and (iii)
gravity. If the variation of angle and its derivative, h and _h, are
both small, the factors (i) and (iii) only affect the equivalent point
of the leg, and the period of the leg is only determined by factor
(ii). In this case, the equation of motion of the model can be sim-
plified as

€l ¼ � k

m
ðl� l0Þ � g (2)

and its solution can be derived as

lðtÞ ¼ c1 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
tþ dp

r !
þ c0 (3)

where dp, c0, and c1 are constants. The model moves vertically, so
in this case it acts like a 1D hopper, a reduced-order 1DOF model
of the original two-dimensional SLIP model. This 1D model will
be used to roughly estimate the proper relation between leg stiff-
ness and mass.

Although the SLIP model can adequately serve as the template
of the original complex robot (i.e., anchor) [21], there remain sev-
eral key discrepancies which should be taken into account during
the design process. First, the SLIP model is a planar point-mass
system which has only 2DOFs. In contrast, the physical robot is
better modeled as a rigid-body system (i.e., with inertia) which
moves in 6DOF space. Even when the robot’s mapped 2DOFs are
controlled to generate motion similar to the model, the other
4DOFs should be taken care of to reduce their effect on the two
controlled DOFs. Second, the SLIP model is energy conservative.
In contrast, the physical robot is an energy-dissipative system that
requires an onboard energy source. To remedy these discrepan-
cies, the robot should have multiple actuated legs.

Together with the passive compliant leg, the overall hexapedal
morphology of the robot is similar to that of RHex [9], but it has
different methods of actuation and leg coordination. The use of an
alternating tripod gait and compliant legs has several advantages:
(i) The mapping from three real and synchronously moving legs
of one tripod to one virtual leg of the SLIP model is straightfor-
ward, where the spring constants of the former can be summed up
and roughly equated to that of the latter. (ii) Geometrically, it is
also reasonable to locate the virtual leg right below the COM
where the middle real leg is located. (iii) During the tripod stance
phase, the moments generated from the foreleg and hindleg nor-
mal to the sagittal plane can cancel out each other. Thus, if the
robot touches the ground without any pitch angle, ideally it will
maintain the same configuration at lift-off. This characteristic

keeps the robot’s COM motion in the sagittal plane and close to
the reduced-order SLIP model.

The motions of the two tripods should be coordinated in a spe-
cific manner, so the robot can exhibit dynamic locomotion with
flight phases. The leg motion has the following constraints: (i)
The time duration of a tripod in its aerial phase, Ta, should be lon-
ger than its stance phase, Ts, so that the time duration can include
the stance phase of the other tripod and the two flight phases, Tf ,
of the robot in between

Ta ¼ Ts þ 2Tf (4)

(ii) The configuration and motion of the tripod in stance phase
should sweep through a certain angle range, hs. Thus, a mecha-
nism should be designed to transform the continuously rotating
motor motion to the reciprocating leg motion described above. A
linkage mechanism is one obvious choice. However, this method
provides limited ground clearance. To enhance the robot’s ability
to negotiate obstacles, the leg motion is designed to continuously
rotate in the same direction as the motor input, but the phase map-
ping from motor to leg is altered. Thus, when the motor moves at
constant speed, the leg can still move according to a specific pat-
tern as described above. The time duration of the leg in aerial
phase is roughly 1–1.5 times that in stance phase, and the rotation
angle of the leg in flight phase, ha, is about 6 times greater than in
stance phase, hs. As a result, the leg rotational speed in the aerial
phase is at least 4–6 times higher than in the stance phase. This
varying rotation speed can be achieved by the use of noncircular
gears, which vary the speed ratio and move periodically. In addi-
tion, the two tripods should move alternately, and this phase dif-
ference can be achieved by offsetting the orientation of the gears.
As a result, the robot can be driven by a single motor without
position control effort, yet achieve the desired trajectories. An il-
lustrative sketch of the robot’s locomotion is provided in Fig.
1(b).

A commercial DC motor is adopted as the source of mechanical
power. Because the motor’s high-speed and low-torque character-
istics are the opposite of the desired low-speed and high-torque
leg motion, a transmission with high-speed reduction is required
between the motor and the noncircular gear pairs. The nominal
speed of the motor can be easily found in its datasheet, and the leg
stride frequency is designed based on the behavior of a mammal
with similar weight. Previous research indicates that the stride fre-
quency in animals varies from about 1 to 6 Hz (mouse to horse),
and that larger mammals have even lower stride frequencies [39].
The stride frequency of a 0.36 kg rat while jogging is about 1.5–5
Hz, and that of a 9.2 kg dog is about 2–4 Hz. The robot’s weight
is targeted around 3 kg, so the stride frequency is set at about 3–4
Hz. To successfully excite SLIP-like dynamics in the robot, the
natural frequency of the SLIP model and the stride frequency
should be matched. Equation (3) reveals that the former frequency
is determined by the mass and the leg stiffness. Thus, while the
robot mass is usually predetermined, the robot leg compliance is
one of the key parameters to be tuned. This topic will be described
separately in Sec. 4. In addition, it is desirable to have the robot
stand without requiring motor power, which suggests a nonback-
drivable transmission system. As a result, a worm and worm gear
pair is installed in the transmission system as well.

Turning the robot requires a separate mechanism because the
designed transmission system has 1DOF and only allows the robot
to move forward and backward. Thus, the robot is equipped with a
carlike steering mechanism to control the direction of the fore-
legs as shown in Fig. 2. With these two DOFs, the robot is capable
of walking, running, and turnings, just like ordinary wheeled
vehicles moving on flat ground.

Figure 2 depicts a sketch of the final robot design and compo-
nent arrangement. Motor power is transmitted to a long shaft
installed in the fore-aft direction through a pair of spur gears. This
shaft is mounted with three worms. Through the matched worm
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gears, the motor power is transmitted to the front, middle, and
hind shafts mounted in the lateral direction. These shafts then con-
nect to noncircular gears and then to the leg shafts, to create the
desired speed variation of the legs as well as generate the phase
difference between the two tripods. Note that the current design
uses six pairs of noncircular gears, since they are mounted at the
very end of the transmission system. Ideally, each tripod needs
only one pair of noncircular gears if the gears are mounted at the
beginning of the transmission system, before the motion splits to
three legs of the tripod. In this morphology, most of the shafts
move in the same pattern as the legs, which means extra power is
required to accelerate/decelerate the shafts. In the design shown in
Fig. 2, most of the shafts move at the same speed as the motor.
This arrangement not only saves energy and reduces vibration but
also uses the shafts as flywheels to stabilize the leg motion. In
addition, this morphology preserves the possibility of using differ-
ent leg rotation profiles on the legs of the same tripod.

The operator can remotely control the robot through a commer-
cial radio-control (RC) transmitter–receiver pair designed for RC
toys. The speed of the DC motor for robot driving can be varied by
supplying different averaged voltage to the motor (pulse width
modulation method), which is directly determined by the control
bar on the transmitter. The motor speed is not feedback-controlled,
so when the control bar is set at the same position, the motor speed
may vary depending on the required torque and battery voltage.

Although the leg morphology and motion of the robot seem
similar to that of RHex [9], there exists an important and funda-
mental difference. RHex is a typical example of a “mechanism
less” system, whose legs are directly connected to the motor

shafts. It is also the simplest form of hexapod in that category—
containing only six active DOFs. Though the DOF of RHex is low
compared to other legged robots, it can generate various behaviors
such as stable walking [11], jogging [12], stair ascent/descent
[40,41], pronking [42], bounding, bipedal running [43], self-
righting [10], high-step climbing [13], and leaping [44,45]. Here,
although the robot can only perform alternating tripod gaits owing
to the trade-off of using a simple single-motor driving system, it
has sufficient maneuverability and is good enough to negotiate
various kinds of rough terrain. Its DOFs are reduced to a level
comparable to general wheeled or tracked systems on the ground,
yet with additional rough terrain negotiability. The motion con-
straint generated by the reduced DOF sometimes helps to support
the force required for dynamic locomotion (e.g., centrifugal when
the vehicle turns). Here, the 2DOF legged robot has a similar
DOF arrangement as the 2DOF wheeled vehicle, so its control
strategy is as simple as that of a wheeled one. This also implies
that the actuation strategy of the legged robot in this morphology
is “mechanical-based,” unlike the “control-based” RHex. In short,
the novelty and uniqueness of the designed robot lie in its simplic-
ity of two active DOFs with a noncontrolled motor driving sys-
tem, yet with the capability of dynamic ground locomotion and
rough terrain negotiation.

3 Design of the Noncircular Gears

The transmission system described in Sec. 2 can be regarded as
the main mechanism to create an alternating tripod gait, which
requires two conditions. First, the legs’ rotational speed should be
varied so at least one tripod is usually configured in its stance pos-
ture, and the flight phase of the robot happens in between the
stance postures of the two tripods. Second, two tripods need to
have phase shift so they will contact the ground alternately. The
latter condition can be easily achieved by configuring the trans-
mission so that the tripods have a phase shift. To satisfy the first
condition, a noncircular gear pair is adopted.

A gear is a type of transmission system which can continuously
transmit rotational kinetic energy from one shaft to another. The
kinematic motion of the gear pair is determined by the
“imaginary” rolling circles, named pitch circles. Two pitch circles
contact and roll with each other continuously. The rolling condi-
tion yields the same instant velocity, v, at interface, which can
also be computed from both gears.

v ¼ xinrin ¼ xoutrout (5)

where xin and xout and rin and rout are the angular speeds and radii
of the input and output gears, respectively. For an ordinary circu-
lar gear pair, the above four parameters are fixed. In contrast, for
the noncircular gear pair, these four parameters are varied.
Though the radii of two gears vary, the center distance of this gear
pair, s, should be fixed

rin þ rout ¼ s (6)

By combining Eqs. (5) and (6), the radius of the output gear can
be parameterized as

rout ¼ s=ð1þ xout=xinÞ (7)

which can be passively determined by the given center distance
and speed ratio x̂ ¼ xout=xin. In addition to the constraint defined
in Eq. (7), the rotational speed of the gears should be matched as
well, so the gear pair can rotate continuously. For simplicity, the
rotational periods of both gears are set to be equal, so when the
input gear rotates one turn, the output gear rotates one turn as well.

ðp

0

xindt ¼
ðp

0

xoutdt ¼ 2p (8)Fig. 2 The hexapod robot: (a) three-dimensional (3D) model
which shows key components and (b) photo of the robot
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where p is the period of the gear. Note that the period of the gear
can also be designed to be the integer multiple of the other one.
(For example, one turn of the input gear yields a half turns or two
turns of the output gear.) Setting one-turn-to-one-turn mapping is
for simplicity. In addition, one turn of the output gear is also set to
map one turn of the leg, so the gear profile is a geometrical repre-
sentation of the leg motion.

The speed profile of the gears which satisfies the constraints
described above can be computed by using the normalized plot
shown in Fig. 3(a), which uses speed ratio, x̂, as the vertical axis
and normalized time, t̂ ¼ t=p, ranging from 0 to 1 as the horizon-
tal axis. In this case, the input gear can be regarded as having unit
speed, as the red solid line shown in the plot. Because both axes
are normalized, the integration of the speed ratio with respect to
the normalized period should be set to 1, which automatically sat-
isfies the requirement of Eq. (8)

ð1

0

x̂dt̂ ¼ 1 (9)

In other words, if the output gear moves according to the red solid
line shown in Fig. 3(a), it moves with the same rotation angle
(and speed) as the input gear. When the input gear makes one
turn, the output gear also makes one turn, and the integrated area

under the red line is equal to 1. Equivalently, if the output gear
moves according to the green dashed-dotted curve which has
speed variation, then as long as the integrated area underneath is
equal to 1, whenever the input gear makes one turn, the output
gear makes one turn as well. In addition, the speed profile should
be designed to create the tripod gait as described in Sec. 2: The
leg in stance phase (i.e., hs) should move slowly and take no more
than half of one period, and the leg in flight has to move fast, pre-
paring for the next stance phase. The green dashed-dotted line
segments shown in Fig. 3(a) depict the base speed profile of the
output gear, x̂g, which includes four segments: low velocity
region, acceleration region, high velocity region, and deceleration
region. The integrated area at the first half of the period is roughly
equal to hs shown in Fig. 1(c). The speed profile of the output
gear, x̂, is further smoothed using a Fourier series with three
terms to reduce the dramatic acceleration and deceleration in
transmission.

xoutðt̂Þ ¼
1

2
a0 þ

X2

n¼1

an cosð2pnt̂Þ þ bn sinð2pnt̂Þ

an ¼ 2

ð1

0

x̂gxin cosð2pt̂ Þdt̂

bn ¼ 2

ð1

0

x̂gxin sinð2pt̂ Þdt̂

(10)

and is shown in the blue dashed curve in Fig. 3(a). Because the
Fourier series will not change the integral in one period, the area
below the blue dashed curve is the same as that below the green
line segments. Thus, as long as the base speed profile satisfies the
constraint shown in Eq. (9), the gears will function as desired.

The detailed gear profile can then be generated based on the
defined profile of the speed ratio shown in Fig. 3(a). First, pitch
circles of the noncircular gear pair are generated. Unlike a pitch
circle of the ordinary gear which has constant radius, the pitch
radius of the noncircular gear varies. In order to generate the
pitch circles of the gear pair numerically, an angle which para-
metrizes orientation of the input gear is defined (i.e., ranging from
0 to 2p). By using Eqs. (6), (7), and gear speed ratio shown in Fig.
3(a), the pitch radii of the input gear and output gear at each gear
orientation can be computed. Thus, the complete pitch circles can
be generated after this parameter sweeps its full range. Following
that, the final teeth profiles based on the involute geometry can be
generated [46]. The pitch circles and tooth profiles of the noncir-
cular gear pair are plotted in Fig. 3(b).

4 The Design of the Legs

The model-based design described in Sec. 2 suggests that the
robot leg should act like a massless linear spring. The desired leg
stiffness can be roughly estimated by the locomotion characteris-
tics of animals with similar size and weight. According to Ref.
[39], an animal weighing around 3 kg should have a body stride
frequency fs within a range of 3–4 Hz. Because the robot utilizes
an alternating tripod gait, the leg stride frequency fl should be half
of the body stride frequency, about 1.5–2 Hz. Following this, the
leg stiffness can be roughly estimated by using a 1DOF spring-
mass model:

fs ¼ 2fl ¼
1

2p

ffiffiffiffiffi
k

m0

r
(11)

This is the same strategy adopted by biological research [19,20].
In addition, because tripod locomotion has three legs contacting
the ground simultaneously, the stiffness of each leg should be
one-third of the virtual leg stiffness, around 0.75 kN/m.

A commercial shock absorber for remote control cars (Fig.
4(a)) was employed in the first iteration of the robot leg. Though,

Fig. 3 Design of the noncircular gear pair. (a) The normalized
angular speed profiles of the input gear (red solid line) and the
output gear (base design: green dashed-dotted line segments;
after smoothing: blue dashed curve). (b) The designed pitch
circles and the final appearance of gear.
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in general, it has both spring and damper effects, by removing the
oil inside the absorber piston it can perform like an idealized
Hooke’s law spring. Empirical evaluation confirms this behavior
if the external forces acting on the absorber are close to the spring
direction. However, the shock absorber does not work well when
large lateral forces are involved. As a result, the compliant circu-
lar leg shown in Fig. 4(b) is adopted, the same morphology as the
legs on RHex. As a side note, the same circular leg is also used on
the leg-wheel transformable robot [47].

The compliant circular leg is a complex high-order system and
its stiffness relative to the 1D virtual linear spring should be
addressed. Owing to its rolling contact, the equivalent linear stiff-
ness changes as the contact point changes. The force-deformation
relation of the circular leg with different ground contact points
spanning about 70 degrees were empirically measured, and the
results are plotted in Fig. 4(d) with the angle definition shown in

Fig. 4(c). This figure reveals that for each contact point, the stiff-
ness is quite consistent, and this stiffness can be found by the lin-
ear regression method. However, the figure also shows that the 1D
stiffness, k1D, increases when the contact point moves close to the
hip joint, varying from 0:7 kN=mto 0:3 kN=m as shown in
Fig. 4(e). Finally, based on this data, the stiffness of the effective
virtual linear spring is chosen 1:1 kN=m to cover the stiffness val-
ues while the leg contacts the ground at a normal range (i.e.,
w ¼ �30 deg to 10 deg). Note that the overall stiffness of the cir-
cular leg can be tuned to the range around 0:75 kN=m by reducing
the width of the leg. However, we found that the empirical leg
with this stiffness is very fragile and cannot survive in extensive
experimental runs. Because the leg stride frequency can be oper-
ated at a higher value by increasing motor speed, the circular leg
with equivalent linear spring of 1:1 kN=mis adopted for our exper-
imental work. According to Eq. (11), the new desired stride fre-
quency is increased to 5 Hz, to keep the robot’s motion close to its
natural rhythm.

5 The Modified SLIP Models

The robot’s locomotion is abstractly designed based on the
dynamic motion of the SLIP model as described in Secs. 2–4.
However, the adoption of the circular leg may result in different
distal motion behavior in comparison to that of the SLIP model in
the following aspects: First, the leg has rolling contact; and sec-
ond, the equivalent linear stiffness changes as the contact point
moves. Thus, the leg model needs to be revised to remedy this dis-
crepancy generated by the use of a circular leg. Previously, we
developed a SLIP model with rolling contact named R-SLIP as
shown in Fig. 5(a) [33]. The R-SLIP model has four intrinsic
parameters as listed in Table 1. By giving the same three ICs (a,
b, vamp) as those of the SLIP model, the dynamic locomotion of
the R-SLIP model can be numerically simulated. The details are
described in Ref. [33]. This configuration of the leg can incorpo-
rate the two characteristics of the circular leg described above
which the SLIP model cannot provide. Thus, in the experimental
evaluation of the robot, the R-SLIP model will be used as one of
the dynamic models for performance comparison.

The revised version of R-SLIP, named R2-SLIP in Fig. 5(b), is
also utilized as a model for performance comparison. R2-SLIP
has a similar configuration to R-SLIP, except for the additional
linear spring connecting the torsion spring and the circular rim.
The idea behind the R2-SLIP model comes from making it
capable of having 2D deformation as the circular leg does. The
R-SLIP leg is a 1D reduced-order model whose deformation can
only follow a specific pattern. In contrast, with the added linear
spring whose motion is orthogonal to the torsional spring, the
R2-SLIP leg can exhibit a 2D force-deflection pattern, and the de-
formation is decomposed into two springs in polar coordinates.
Though the empirical force-deformation pattern of the circular leg
may be considerably more complex than the model owing to its
continuous deformable characteristic, R2-SLIP can provide the
motion approximation without loss of mapping rank. The R2-
SLIP model has five intrinsic parameters as shown in Table 1. By
giving the same three ICs (a, b, vamp) as those for the R-SLIP
model, the dynamic locomotion of the R2-SLIP model can also be
numerically simulated. The process of quantitative derivation of
the R2-SLIP model is similar to that of the R-SLIP model reported
in Ref. [33], and the details are described in the Appendix of this
paper.

The dynamic performance of the physical robot will be com-
pared to that of the SLIP, R-SLIP, and R2-SLIP models, so the
parameters of these models should be correctly mapped to the
robot specifications beforehand. The mapping of the mass (m) and
the leg’s geometrical characteristics (l of SLIP; l and r of R-SLIP;
l1 and r of R2-SLIP) are straightforward, and only the mapping of
the stiffness needs to be developed. The mapping of the linear
spring stiffness of SLIP is described in Sec. 4, which also served
as a guideline for developing the leg stiffness of the robot. Thus,

Fig. 4 Two types of legs used on the robot. (a) Linear spring
leg and (b) compliant circular leg. (c) Method and notation of
deriving equivalent linear spring stiffness of the compliant cir-
cular leg. (d) Plot of force versus deformation of the compliant
circular leg with different contact points. (e) Plot of stiffness of
the compliant circular leg versus different contact points. The
matched torsion spring stiffness of the R-SLIP model and R2-
SLIP is plotted in solid red curve and dashed green curve,
respectively.
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here the mapping of the stiffness of the R-SLIP and R2-SLIP
models to the circular leg are addressed. The same force-
deformation data of the circular leg shown in Fig. 4(e) are used,
and the contact point is also parameterized by the symbol w.

Figure 5(c) depicts the notations for stiffness mapping between
the R-SLIP model and the circular leg. The state of the torsional
spring is parameterized by the symbol /. The following equations
can be defined based on geometrical relations:

l ¼ 2r sin
n
2

� �

la ¼ 2r sin
p� nþ w

2

� �

/0 ¼
p� w

2

(12)

where the subscript 0 denotes the initial and undeformed condi-
tion. Because the leg is massless, the torque generated by the
deformed torsional spring and the external forces are balanced in
the static equilibrium

Fl cosðhÞ ¼ ð/0 � /Þkt (13)

with

h ¼ cos�1 la

lb

sinð/Þ
� �

lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ l2

a � 2lla cosð/Þ
q

The above equations allow us to numerically find unknowns h and
/ when the model is applied with a load F and given kt and l (or
n). Then, by letting kt and l be free variables to be tuned, the best
choices of kt and l can be found by using the eight data sets shown
in Fig. 4(e) and least squared error criteria. The figure also plots
the stiffness (KID) versus w of the model with best parameters
kt¼ 3.6 (N m/rad) and n¼ 71 deg (red solid line). Except when
w¼�60 deg, the error at other ws is generally less than 10%,
especially at the commonly used region w¼�30 deg to 10 deg.

Figure 5(d) depicts the notations for stiffness mapping between
the R2-SLIP model and the circular leg. The states of the torsional
spring and the linear spring are parameterized by the symbols /
and d, respectively. The following equations can be defined based
on geometrical relations:

l1 ¼ 2r sin
n
2

� �

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2rÞ2 � l2

1

q
l3 ¼ 2r sin

w
2

� �

/0 ¼
p
2

(14)

When the external forces F are applied, both springs are deformed
in static equilibrium

Fl1 cosðhÞ ¼ ð/0 � /Þkt

F sinð/� hÞ ¼ ðd0 � dÞkl
(15)

To keep the forces acting along the same line, the following rela-
tionship should be held:

� l1 cos hþ d cosð/� hÞ þ l3 cosðd� pþ /� hÞ ¼ 0

with d ¼ tan�1 l1

d

� �
þ p� w

2
(16)

Similar to the process described in the last paragraph, the
unknowns h, /, and d can be derived when the model is applied
with a load F and given kt and l1 (or n), and the deformed length
lb can then be found by the following equation:

lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlxþ l1Þ2þ ðlyþ l3Þ2� 2ðlx þ l1Þðly þ l3Þcosð�pþ/ þ dÞ

q

with

lx ¼
d sin d

� sinð/þ dÞ

ly ¼
d sin /

� sinð/þ dÞ

(17)

Fig. 5 (a) The R-SLIP and (b) R2-SLIP models with their intrin-
sic parameters, ICs, and motion profiles, respectively. The nota-
tions of the R-SLIP model (c) and the R2-SLIP model (d), which
are used to determine the parameters of the models with best
fit to the characteristics of the circular legs.

Table 1 The model parameters and ICs

R-SLIP model parameters R2-SLIP model parameters
Circular rim (r) Circular rim (r)
Torsional spring stiffness (kt) Torsional spring stiffness (kt)

Linear spring stiffness (kl)
Mass (m) Mass (m)
Bar length (l) Bar length (l1)

Model ICs
Landing angle ðbÞ

Touchdown speed (vamp)
Touchdown angle ðaÞ
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Then, the best parameters kt, k1, and l1 are found based on the
criteria that the model with this specific set of parameters has the
minimum summed percentage errors to the eight experimentally
measured 1D stiffness (KID) of the circular leg as shown
in Fig. 4(e). The best parameters are kt ¼ 3:5ðNm=radÞ,
kt ¼ 4:5ð kN=mÞ; and n ¼ 55 deg. The figure also plots the stiff-
ness (KID) versus w of this model.

In comparison to the SLIP model, the R-SLIP and R2-SLIP
models exhibit characteristics closer to the empirical circular leg
such as rolling and variable linear stiffness. The dynamic motion
of all three models will be compared to the robot. However, there
still exists another major difference between the robot and the
models: the energy characteristics. The models are energy con-
servative, so their locomotion is basically determined by the
exchange of kinetic and potential energy. In contrast, the robot
inputs power via a motor to overcome frictional losses. Thus,
models with input torque and damping have been developed to
address this issue [34,38,48]. This approach addresses the energy
issue but also creates new challenges such as modeling the empiri-
cal torque control and placement of damping components which
capture overall damping of the robot. These new issues are com-
plex, particularly for this new and more sophisticated leg. Thus,
instead of using torque and damping, the models are imposed with
leg motion constraints as the solution to this energy issue. Since
the robot has fixed motor characteristics and gear transmission
systems, the motor speed can be fixed, yielding a specific leg rota-
tional motion profile (i.e., hðtÞ; _hðtÞ; €hðtÞ) with respect to the body
frame. When the robot moves stably where its pitch variation is
limited as shown in Fig. 1(b), the described leg profiles are equal
to the leg profile with respect to the world frame as shown in Fig.
1(c). Therefore, when the robot’s leg motion is mapped to the
model’s leg motion, one of the model leg’s DOFs can be regarded
as known (i.e., h in all three models), and only the other state
needs to be solved by the derived dynamic equations (i.e., l of the
SLIP model, / of the R-SLIP model, and / and d of the R2-SLIP
model). In summary, three models with this leg motion constraint
will be used to evaluate their dynamic motion similarity to the
empirical robot as well.

6 Robot Performance Evaluation

The robot shown in Fig. 2(b) was built for performance evalua-
tion. It has a mass of 3.6 kg, and each leg (half-circular polyvinyl
chloride and tire tread) has a mass of 0.035 kg. Figure 6(a) shows
a snapshot of the robot negotiating an obstacle. A video is avail-
able as supplemental material. The legs correctly move according
to the designed alternating tripod gait, so the robot can walk stably
and smoothly. When the leg stride frequency increases, the robot’s
motion enters a dynamic region where it runs with alternating
stance and flight phase as shown in Fig. 6(b). To quantitatively
evaluate the dynamic behavior of the robot to the SLIP, R-SLIP,
and R2-SLIP models, the robot was run at different stride frequen-
cies under the ground truth measurement system as shown in Fig.
6(c). The system has two high-speed cameras (A504 k, Basler)
installed on the top right and left sides of the experimental area to
capture three LED markers mounted on top of the robot. The 3D
positions of the markers can be reconstructed by two synchronized
images captured by the cameras, running at 250 Hz. The robot’s
COM trajectories and body orientations versus time were recov-
ered by the computed 3D coordinates of the three markers. A
force plate (4060-07-1000, Bertec) was placed on the runway to
record the force interaction between the robot and the ground.

Figure 7 plots the rotation speed of the designed profile (red
with arrow) and empirical robot leg versus time while the robot is
driven with different frequencies. The robot leg data are the deri-
vation of the recorded data from an encoder installed on one of
the legs. Because each subfigure contains data from several exper-
imental runs, it is presented statistically with mean and standard
deviation (vertical bars). The designed profile is computed from
the transmission profile described in Sec. 3 with the assumption of

constant motor speed input. Because the empirical stride frequen-
cies of the robot in each subfigure vary slightly, the desired leg
speed also has variation, and the data are presented statistically
with mean and standard deviation. The plotted range of the
designed profile equals the range of the robot stance phase. This
figure is the baseline comparison to evaluate whether or not the
robot leg moves according to the designed profile. The figure
reveals that in most cases the leg moves in the predicted manner.
The largest error takes place when the leg touches the ground. At
this moment, the torque required to keep the body moving forward
increases suddenly. This phenomenon is clearly observed when
the robot stride frequency is low, where the robot has less forward
momentum. After the initial ground engagement, the leg can
quickly recover to its designed rotational speed. This figure con-
firms that the driving motor is most likely powerful enough to sus-
tain the required torque variation during locomotion, so the robot
leg can indeed move according to the designed profile. This is im-
portant because the designed leg profile is used as the motion con-
straint criteria in the models with leg motion constraint (i.e.,
regulated model).

To systematically evaluate the behavior of the robot, the robot
was run 32 times with various stride frequencies from 2.6 Hz to
9.2 Hz. The data of the robot were grouped into three frequency

Fig. 6 Photos of the robot walking (a) and jogging (b). (c) Ex-
perimental setup for robot performance evaluation.

Fig. 7 Mean and standard deviations of the legs’ actual (blue)
and designed (red with arrow) rotational speeds
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groups for performance analysis in a statistical manner, and the
mean and standard deviations of the frequencies in the groups are
3.6(0.3) Hz, 5.2(0.4) Hz, and 9.1(0.4) Hz, respectively. The dis-
placement data were measured by a camera system, and the veloc-
ity data derived from this data without any post processing (i.e.,
filter). The acceleration data are computed from the force data
with division to mass.

Figure 8 plots the steady-state displacement, velocity and accel-
eration of the robot COM in the fore/aft (x) and vertical (z) direc-
tions versus time with the described frequency groups. The

vertical reference is set on the ground, and the nominal height of
the robot COM 0.099 m is plotted as the reference as well. The
time duration covers one stride period. The robot data shown in
blue are presented in a statistical manner with mean and standard
deviation (vertical bars). In addition, Fig. 9 plots the robot COM
trajectories (blue) in the sagittal plane. Several observations can
be drawn based on these two figures: (i) The robot with low stride
frequency 3.6(0.3) Hz shown in Fig. 8(a) exhibits behavior close
to the slow tripod walking where the robot’s COM in the vertical
direction has an increase–decrease profile. (ii) In contrast, the

Fig. 8 The states of the robot (blue) and models (red). The robot is operated with different stride frequencies: 3.6(0.3) Hz in (a),
5.2(0.4) Hz in (b), and 9.1(0.4) Hz in (c).
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robot with middle stride frequency 5.2(0.4) Hz shown in Fig. 8(b)
(also the frequency designed for running described in Sec. 4)
exhibits behavior close to dynamic running, where the robot’s
COM in the vertical direction has a decrease–increase profile,
matching the leg spring’s single compression-release pattern. In
addition, the robot with this stride frequency has larger landing
angle in comparison with the robot with low stride frequency
shown in Fig. 8(a), so the initial COM heights in both cases are
different. (iii) The robot with high stride frequency, 9.1(0.4) Hz,
exhibits behavior similar to tripod walking. The tripod of the robot
at this frequency has less effect on the overall robot motion, and
on this occasion the robot’s COM maintains a similar height dur-
ing locomotion. (iv) The forward speed of the robot increases as
the stride frequency increases. The mean (std) speed of the robot
with three groups of frequencies are 0.49(0.06), 0.62(0.06), and
1.01(0.06) m/s, respectively. In short, a robot with the right fre-
quency range can excite its dynamic behavior, and one in another
frequency range can perform ordinary tripod walking. The walk-
ing and running behaviors can also be actively and easily initiated
by changing the voltage supplied to the driving motor of the robot,
where the higher voltage yields a higher stride frequency. In addi-
tion and higher forward speed change.

To further evaluate the dynamic behavior of the robot with a
stride frequency of 5.2(0.4) Hz, the robot data were compared
with the SLIP, R-SLIP, and R2-SLIP models’ data, both without
and with leg motion constraint (i.e., passive versus regulated
model). The touch-down and lift-off moments of the robot are
determined by the vertical ground reaction force data, and this
information is used for synchronization with the model data.
Because the touchdown conditions of the robot vary slightly for
different strides and runs, the models are simulated according to
the measured ICs. Thus, the model data have variations as well.
Likewise, their mean and standard deviations are used for per-
formance analysis. For comparison, Fig. 8(b) plots the displace-
ment, velocity, and acceleration of the passive model and
regulated model in fore/aft (x) and vertical (z) directions versus
time, respectively. Likewise, Fig. 9(b) plots the mass trajectories
of the models in the sagittal plane. The root mean squared (RMS)
errors between the robot and the models in fore/aft vertical, and
planar displacements and velocities are listed in Table 2. The for-
mer two errors can be regarded as the statistical results of the data
shown in the first and fourth columns of Fig. 8(b).

First, we consider the dynamic states such as velocity and
acceleration. Figure 8(b) reveals that the R-SLIP and R2-SLIP
models are a better match to the robot than the SLIP model, where
the latter has a larger variation in motion trend. Regarding the first
two models, the figure also reveals that the data in the vertical
direction have a better match, and that in the fore/aft direction
there is some discrepancy. This can be explained by the ground
slippage effect. The presented data in displacement, velocity, and
acceleration are derivatively and integratively related, so velocity
(the middle datum) is used for explanation. The forward velocities
of the passive models are generally lower than that of the robot
because the leg regulation powered by the motor is ignored. On
the other hand, the forward velocities of the regulated models are
generally faster than that of the robot, mainly because the empiri-
cal friction force is not sufficient to help the robot achieve the
desired acceleration in the second half of the stride period. Thus,
the empirical robot’s forward velocity lies between the velocity of
the passive model and the regulated model. In contrast, the motion
in the vertical direction is less affected by friction, so the motion
trends of the robot and models match reasonably well. The
unmodeled friction effect makes the robot’s forward speed slower
than expected because the ground contact point does not move
forward owing to slippage. This empirical fact favors the SLIP
model because its ground contact point is supposedly fixed. As a
result, though the SLIP model does not match the dynamic details
as the other two models as shown in Fig. 8(b), the displacement
state of the SLIP model appears to have a reasonable match as
shown in Fig. 9(b). The planar RMS errors shown in Table 2

reveal that the error is smaller than that of the R-SLIP model and
is comparable to that of the R2-SLIP model. Considering only the
displacement state, Table 2 reveals that the R2-SLIP has the best
match to the robot behavior on most occasions. In summary, if the
modeling is acting at a very abstract level and the COM trajectory
is the most important state to consider, then the SLIP model is
usually sufficient to satisfy this requirement. On the other hand, if
the modeling is taken to a deeper level where the detail dynamics
are addressed, the R-SLIP and R2-SLIP models are better choices
since they fundamentally catch the dynamic properties of the
compliant leg better. Moreover, if both displacement and dynam-
ics are considered, the R2-SLIP model is the most adequate
choice. On the other hand, if the controller law is to be model-
based, the R-SLIP model may be the better choice since it catches
the dynamics with a model structure that is simpler than that of
the R2-SLIP.

7 Conclusion

We report on the design and implementation of a bio-inspired
hexapod robot, which merges the simple morphology of RHex
with bio-inspired tripod gaits and circular legs as well as the
single-motor transmission strategy of iSprawl. The uses of a non-
circular gear pair and a worm and worm gear pair are confirmed
to be effective in generating tripod locomotion and energy-
efficient standing posture of the robot. The robot can be operated
like an ordinary vehicle, yet it can negotiate obstacles because of
large ground clearance created by the legs’ aerial phase. In addi-
tion, by appropriately using the passive dynamic strategy where
the mass, leg stiffness, and stride frequency of the robot are
matched to a reduced-order dynamic model’s natural rhythm, the
robot can initiate running motion with a flight phase. The experi-
mental evaluation of the robot also reveals that its motion changes
from slow walking, to running, and then to fast walking when the
stride frequency increases, and the robot’s forward speed
increases accordingly.

The success of this minimally actuated legged platform under-
scores the importance of the passive dynamics created by the
interplay between the rhythmic actuation, compliant legs, and
contact with the ground. Since the shape of the legs dictates the
system’s behavior, an accurate, yet simple, dynamic model which

Fig. 9 The robot COM trajectories (blue solid) and model mass
trajectories (red dashed). The robot is operated with different
stride frequencies: 3.6(0.3) Hz in (a), 5.2(0.3) Hz in (b), and
9.1(0.4) Hz in (c).
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accounts for the leg geometry is desired. To evaluate the fidelity
of reduced-order models in capturing these locomotive dynamics,
the running performance of the robot is compared to three
reduced-order models. The robot’s COM trajectory in the sagittal
plane has the highest similarity to the SLIP model, but the R-SLIP
and R2-SLIP models catch the dynamic details of the locomotion
better. Considering all states, the new R2-SLIP model may be the
best tool to evaluate and inform future leg design efforts, which
will, in turn, enable more capable and agile running robots—
whether they have many or few actuated DOFs in their legs.
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Appendix: Derivation of the R2-SLIP Model

Figure 5(b) depicts the configuration of the R2-SLIP model,
and its motion includes stance and flight phases as the SLIP or
R-SLIP models do. The process of deriving its dynamic model
is similar to that of the SLIP or R-SLIP model, except for the
over-constraint condition. To remedy this, a small mass is in-
stalled at the junction of the linear spring and the torsion
spring, so the dynamics of the model become solvable. Note
that the mass m of the R2-SLIP model or the R-SLIP model
usually represents the robot body mass, and the small mass of
the R2-SLIP model represents the leg mass. When the model
is mapped to the robot with tripod locomotion, the stiffness
and mass of the model leg should be triple of the individual
robot leg.

The dynamic behavior of R2-SLIP model in stance phase can
be derived by the Lagrangian method. The generalized coordi-
nates include the length d and the two angles h and / as shown in
Fig. 5(d). Assuming the leg rolls on the ground without sliding,
the Cartesian coordinates of the body mass, ðxb; ybÞ, and leg mass,
ðxl; ylÞ, can be represented as

xb ¼ rð/� hþ h0Þ þ r cosð/� hþ fÞ � d cosð/� hÞ þ l1 cos h

yb ¼ r � r sinð/� hþ fÞ þ d sinð/� hÞ þ l1 sin h

xl ¼ rð/� h� /0 þ h0Þ þ r cosð/� hþ fÞ � d cosð/� hÞ
y1 ¼ r � r sinð/� hþ fÞ þ d sinð/� hÞ (A1)

where the angle f is included by the linear spring and the line con-
necting the center of the circular rim and the position where the
linear spring is attached to. The subscript 0 of h and / indicates
the natural configuration of the model when the springs are not
compressed. The kinetic energy T and potential energy V are

T ¼ 1

2
mbð _x2

b þ _y2
bÞ þ

1

2
mlð _x2

l þ _y2
l Þ

V ¼ mbgðr � r sinð/� hþ fÞ þ d sinð/� hÞ þ l1 sin hÞ
þ mlgðr � r sinð/� hþ fÞ þ d sinð/� hÞÞ

þ 1

2
kTð/0 � /Þ2 þ 1

2
klðd0 � dÞ2 (A2)

Next, the equation of motions can be derived as

d

dt

@

@ _h

� �
� @T

@h
þ @V

@h
¼ 0

d

dt

@T

@ _/

� �
� @T

@/
þ @V

@/
¼ 0

d

dt

@T

@ _d

� �
� @T

@d
þ @V

@d
¼ 0

(A3)

With the given ICs, the dynamic motion of the R2-SLIP model in
its stance phase can be computed numerically. The motion of the
model in its flight phase is ballistic. Similarly, in the regulated
case where the leg orientation is regarded as known, only the
states / and d need to be computed.
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