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Abstract
We report on the development of a robot’s dynamic locomotion based on a template which fits
the robot’s natural dynamics. The developed template is a low degree-of-freedom planar model
for running with rolling contact, which we call rolling spring loaded inverted pendulum
(R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant
circular legs, the R-SLIP model also acts as the template for general dynamic running. The
model has a torsional spring and a large circular arc as the distributed foot, so during locomotion
it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known
spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points.
Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter
spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than
that of the SLIP model. The R-SLIP model is then embedded as the reduced-order ‘template’ in a
more complex ‘anchor’, the RHex-style robot, via various mapping definitions between the
template and the anchor. Experimental validation confirms that by merely deploying the stable
running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy,
the robot can easily initiate its dynamic running behaviors with a flight phase and can move with
similar body state profiles to those of the model, in all five testing speeds. The robot, embedded
with the SLIP model but performing walking locomotion, further confirms the importance of
finding an adequate template of the robot for dynamic locomotion.

S Online supplementary data available from stacks.iop.org/BB/9/046004/mmedia
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1. Introduction

The natural environment is usually rough and varied. Most
ground animals have evolved with agile and robust legs
which allow them to move gracefully and swiftly across
uneven terrain. Though the geometrical configurations and
evolved stages of the legs may vary significantly, researchers
have found that, through adequate motion coordination
among the legs, an animal’s dynamic locomotion in the

sagittal plane can be approximated by a simple mathematical
model: (spring loaded inverted pendulum (SLIP) [1–3]. Here
the body is treated as a point mass and the legs are
approximated by a massless linear spring. The SLIP model is
energy conservative, and is widely recognized as the intrinsic
and qualitative representation of ground animals’ running
behavior. As a running ‘template’, the SLIP model indeed
provides a prescriptive control guide to the original complex
biological systems which represent empirical ‘anchors’ by
sketching the actuation joints and rigid structures [4]. Con-
sequently, the past few decades’ successful development of
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legged robots with dynamic behavior is basically judged by
the similarity of the robots’ locomotion characteristics to that
of the SLIP model. More specifically, the robot should have a
flight phase as well as an alternating energy exchange
between potential and kinetic energies during locomotion.

The study of dynamic robotic systems was initiated by the
development of monopods in the 1980s [5]. Following this,
various quadruped and hexapod robots with dynamic behaviors
were reported early in the millennium. Examples include the
Scout series [6, 7], Tekken series [8, 9], Sprawl series [10–12],
and RHex [13–16]. In addition, a dynamic climbing robot has
been reported [17]. Possibly owing to the limited power density
of commercial motors, excitation of the dynamic behaviors of
these robots relies mostly on adequate allocation of compliant
parts as well as coordination of these parts with the active joint
motion, so that the potential energy of the spring can be trans-
ferred to and from the kinetic energy of the system. For example,
the hexapod iSprawl has carefully tuned leg compliance. It can be
driven by a single motor, and it generates SLIP-like locomotion
[12]. The hexapod RHex has only one rotational degree of free-
dom (DOF) per leg, but it can generate SLIP-like jogging beha-
vior with its compliant legs [13]. In addition, RHex can perform
various interesting dynamic behaviors [18]. The recently devel-
oped BigDog, Cheetah, and WildCat robots from Boston
dynamics can perform fantastic dynamic behaviors. Instead of
using electric motors, the robots have high-power hydraulic
systems to drive multi-DOF legs as springs; however, very little
technical information has been released to the public.

In addition to the above works which focus on the
dynamic behaviors of empirical robots, some works have
addressed the relation between the template and the anchor.
For example, Poulakakis and Grizzle introduced asymmetric
SLIP to create stable running of the monopedal robot Thumper
[19]. Ankarali and Saranli used SLIP as a template to achieve
stable pronking for a planar and underactuated hexapod robot,
and an embedding controller as a torque-actuated model
(SLIP-T) which can reveal the behavior of the hip joint motors
on the RHex-style robot [20]. Koepl and Hurst treated the
actuated spring-mass system as a force-controlled actuator and
commanded forces according to the passive dynamics of the
ideal SLIP model [21]. Hutter et al utilized an operational
space controller that imposed the SLIP dynamics onto an actual
segmented robotic leg [22]. The above works address the
problem with analytic or numerical approaches on a very deep
and detailed level. Only the last work includes experimental
results, yet the mapping is from the one-leg template (i.e., the
SLIPmodel) to the one-leg articulated leg, not from the one-leg
template to the whole multi-legged robot.

Here, aiming at developing dynamic behaviors for a multi-
legged robot based on the template, we take the robot’s char-
acteristics as the prior constraints and search for its natural
dynamics as the right template. We then seek an adequate
mapping between this template and the multi-legged robot. The
RHex-style robot is utilized as the experimental platform
because of its simple mechanical structure yet agile mobility.
Although the early versions of the RHex used four-bar Delrin
legs because of their similar performance to a linear spring, in
later versions half-circular legs were utilized for their

robustness anddynamic performance [23, 24]. Thehalf-circular
morphology is utilized in otherRHexvariations aswell [25, 26].
However, the half-circular leg has two distinct performance
characteristics which differ from the ideal linear spring. First,
the linear spring ideally has a fixed ground contact point, in
contrast to the half-circular legwhich rolls on the ground so that
the ground contact point keeps moving forward. This behavior
is at some level equal to shifting the center of pressure forward
within stride, similar to a human running with his center of
pressure moving from the posterior to the anterior of the foot
[27]. Flex-Foot Cheetah, a prosthetic human foot worn by
amputee athletes, also has rolling contact with the ground. In
addition, the rolling behavior endows the whole half-circular
leg as a distributed foot, which provides greater mobility [28].
The second difference is that, owing to the forward movement
of the ground contact point, equivalent linear stiffness of the
half-circular leg changes as it rolls on the ground.As a result, the
linear spring may not be a good model for the robot with half-
circular legs, which means the SLIPmodel may not be the right
template for the RHex-style robot with half-circular legs.

We propose a new SLIP model which has intrinsic
properties of rolling behavior and variable stiffness as shown
in figure 1(a) and is hereafter referred to as rolling spring
loaded inverted pendulum (R-SLIP). Its configuration is
inspired from the compliant behavior of thin half-circular
material, based on analysis of solid mechanics. Basically, the
R-SLIP model is composed of a large circular rolling foot, a
short bar with a point mass on top, and a torsion spring
connecting the other end of the short bar and one end of the
rolling foot. The large circular foot can adequately model the
rolling behavior of the circular leg. While the R-SLIP model
rolls on the ground, equivalent linear compliance of the model
changes because the distance between the ground contact
point and the torsion spring changes simultaneously (i.e., its
moment arm is changing). As a result, the two characteristics
of the circular leg described in the previous paragraph can be
preserved in the proposed reduced-order R-SLIP model.

Though the R-SLIP model originated from an under-
standing of the dynamic behavior of the circular leg, in which
this specific type of leg permits RHex to exhibit a rich set of
dynamic behaviors, the R-SLIP model itself acts as a novel
reduced-order model and can serve as the template for a

Figure 1. Model sketches and parameters: (a) the R-SLIP model and
(b) the SLIP model.
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legged system with dynamic locomotion. Owing to its novel
configuration, it has dynamic characteristics that are different
from other recently-developed reduced-order models. Rum-
mel et al proposed a two-segment model with point ground
contact and variable equivalent linear stiffness, and the model
has larger stability than the ordinary SLIP [29]. Jun and Clark
reported a SLIP model with fixed linear stiffness and a rolling
foot (SLIP-R) which confirmed that the rolling foot increases
the region of stable gaits [30]. Ankarali et al proposed a C-
Pod model with a half-circle shape [31]. While the model
rolls on the ground, its equivalent linear stiffness varies, and
the quantitative computation of its dynamic behavior is based
on the assumption that the model maintains a circular shape
and fixed arc length. In addition, some recent models have
energy input and dissipation elements. For example, Seipel
and Holmes proposed a lossy clock-torqued SLIP [32], and
later Shen and Seipel discussed the fundamental mechanism
of the SLIP model with hip torque and leg damping [33]. Jun
and Clark reported a torque-driven and damped half-circle-leg
model, where the rolling contact of the circular leg is modeled
as a sequential change of two-segment legs [34].

The contribution of this work lies in two aspects: one is the
methodology of developing dynamic behaviors of the robot
based on the template, which roughly represents the robot’s
natural dynamics; the other is development and analysis of the
new model R-SLIP (with partial results presented in [35]). The
R-SLIP model is conservative and has four intrinsic parameters
(while the SLIP model has three). Owing to simplicity, dynamic
behavior of the model can be investigated in a complete range
of parameter spaces. In addition, because the R-SLIP model is
inspired from the mechanics of empirical half-circular legs, its
dynamic behavior approximates that of the original complex
system. Thus, by establishing an adequate mapping between the
R-SLIP model and the robot, the dynamic behavior of the robot
can easily be initiated, completing the control structure formed
by template and anchor [4]. As a result, the methodology used
in this work is neither merely model development nor an
attempt to make the existing robot act like an ordinary SLIP,
but to investigate the adequate template for the existing robot,
followed by linking the dynamic behaviors between the simple
template and the original complex robot.

Section 2 describes generation of the R-SLIP model
through the solid mechanics analysis of the half-circular
material. Section 3 reports the quantitative formulation of the
dynamic R-SLIP model. Section 4 provides some detailed
consideration for model analysis, including the setup for
comparing performance with the SLIP model. Sections 5 and
6 report the results of steps-to-fall and return map analysis,
respectively. Section 7 describes the methodology of using R-
SLIP as the template for dynamic behavior initiation on the
RHex-style hexapod robot. Section 8 concludes the work.

2. Origination of the R-SLIP model

The design concept of the R-SLIP model is based on the SLIP
model, which is composed of a point mass and a massless

compliant leg. However, instead of having a linear spring
with point-contact to the ground as the ‘virtual leg’, the R-
SLIP has a torsional spring and a circular leg for rolling
contact. The formulation of the R-SLIP model originated
from the mechanics of the thin circular-shape compliant
material, described in detail below.

The material in a half-circular shape is provided as the
illustrative example. Assume that a massless, elastic, iso-
tropic, and half-circular material is fixed at one end, PH, and is

under force ⎡⎣ ⎤⎦=F F F T
h v at the other end, PE, which has a

horizontal component, Fh and a vertical component Fv as
shown in figure 2(a). Then, as shown in figure 2(b) the
moment at an arbitrary position Pa on the half-circular mate-
rial can be represented as

θ θ θ= − −( )M r F F( ) sin( ) (1 cos( )) , (1)b v h

where θ is the angle included by the line segments OPa and
OPE. The strain energy of the deformed half-circular material,
U , can be expressed as
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Equation (3) can further be formatted in the matrix
representation
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with Mc being the compliance matrix (i.e., inverse of the
stiffness matrix). The matrix is diagonalizable and can be
represented as

Λ= −M S S , (5)c
1

where the matrix S is formed by eigenvectors of Mc and the
diagonal matrix Λ is the principal compliance matrix, formed
by corresponding eigenvalues. Thus, the principal stiffness
matrix, Λ−1, can be derived as

Λ =− − −S M S, (6)1 1
c

1

and its numerical approximation is

⎡
⎣⎢

⎤
⎦⎥Λ =− EI

r

2 0.84 0
0 0.09

. (7)1
3
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Note that the numbers in the matrix shown in (7) are
determined purely by geometrical configuration, and are not
related to material properties since the latter are located out-
side of the matrix.

The eigendecomposition process described in (6) reveals
two principal deformation directions of the half-circular
material (i.e., the directions of the ‘soft spring’ and the ‘hard
spring’). They are sketched in figure 2(c) and plotted in
figure 2(d) as the small cross which passes point PE and is
composed of a dashed blue line segment indicating the
direction of the soft spring, and a dashed cyan line segment
for the direction of the hard spring, respectively. The diagonal
matrix shown in (7) indicates that the stiffness along the
direction of the hard spring is close to an order of magnitude
greater than that of the soft spring. As a result, the half-
circular material is much easier to deform along the direction
of the soft spring. Thus, if the compliance along the stiffer
axis is ignored and only that along the softer axis is preserved,
the compliance of the material can be simulated by a system
composed of a torsion spring, mounted at some point on the
stiffer axis, and two rigid links. One link connects the torsion
spring and the fixed point, PH, and the other link connects the
spring and the ground contact point, PE, as shown in
figure 2(c).

The principle stiffness matrices of the material while
under force at different positions are investigated as well
because the half-circular material θ = °( )180l may contact the
ground at different positions (i.e., rolling contact) when it is
utilized as the virtual leg of the model. This can be done by
using the same method but with different integration ranges
shown in (2) and coordination rotations. The results are shown
in table 1 and figure 2(d). Table 1 lists the stiffness of the soft
( )ks and hard ( )kh springs along the principal axes while the
forces are individually applied at seven different positions (i.e.,
at red circles, θ = ° − °180 90l ). Their corresponding direc-
tions are plotted in figure 2(d). Note that the numbers listed in
the table are the diagonal components of the matrix shown in
(7). The absolute values of the stiffness are the listed numbers
multiplied by EI r2 / 3. Because the latter are the same in the
virtual leg, only the ‘scaling’ parts are listed.

Table 1 and figure 2(d) provide useful hints to design a
reduced-order model based on the characteristics of the half-
circular material. First, the stiffness changes when the contact
point changes. This phenomenon indicates that when the
material rolls on the ground, the shorter the material (i.e., with
the contact point moving up, closer to the top of the material),
the greater its stiffness. Second, the effect of the harder spring
may be ignored because in almost all cases the hard springs
are at least an order of magnitude stiffer than the soft springs.
Thus, the simplified model can also be constructed for the
material with different contact points as shown in figure 2(c).
In addition, the directions of the hard springs (i.e., dashed
cyan line segments shown in figure 2(d)) roughly intersect
with each other around the upper portion of the material (i.e.,
region RA). This characteristic further suggests that a torsion
spring placed around region RA is adequate for the material
with different contact points.

Figure 2. The compliant property of the thin, massless, elastic,
isotropic, and half-circular material. (a) Boundary conditions: one
fixed end at PH and one forced end at PE. (b) Free body diagram of
the arbitrary arc section P Pa E. (c) Modeling stiffness characteristics
of the half-circular material by a reduced-order model with a torsion
spring. (d) The directions of the principal stiffness axes of the
stiffness matrices while the forces are individually applied at seven
different positions. The dashed blue lines and dashed cyan lines
represent the directions of the soft and hard springs, respectively. (e)
The dotted magenta lines represent the deformation direction when
the material is applied with a force along the direction toward point
PH. The dotted brown lines pass through contact points and are
perpendicular to the dotted magenta lines. In both (d) and (e), the
dash-dotted green lines represent the deformation directions of the
R-SLIP model with a torsion spring mounted at PT.
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When the half-circular material is used as a massless
leg of a conservative reduced-order model, the force at the
contact point is along the direction toward point PH, and
the resultant deformation directions of the material (dotted
magenta line segments) can be derived by taking effects
from both the soft and hard springs as shown in
figure 2(e). By using the same analogy of the torsion
spring as described in the previous paragraphs, the region
intersected by the dotted brown lines which pass through
the contact points and are perpendicular to these resultant
deformation directions are intersected with each other
around the upper portion of the material (i.e., region RB).
This characteristic also suggests that a torsion spring placed
around region RB is adequate for the material with different
contact points.

Owing to the proximity of RA and RB to the circular rim,
the torsion spring of the final reduced-order model is set to
locate at PT, on the circular rim as shown in figure 2(c). By
doing so, the geometric parameters needed to define the
model can be reduced by one. As a result, the compliant
behavior of the half-circular material with different contact
points (shown as red circles) can be simulated by a model
composed of a torsion spring at PT, a link connecting the
spring to the fixed point PH, and rigid links connecting the
spring and the red points. The links can be further replaced by
a rigid circular arc which connects the torsion spring and the
ground contact points, with the circular arc length extended
beyond point PE to prevent point-contact behavior when the
leg rolls to the end of the arc. Further, because the shape of
the link P PT H connecting the torsion spring at PT to the fixed
point PH is not important, a straight link is utilized. Finally, by
adding a point mass at PH, a simplified reduced-order and
spring-mass model has the configuration shown in figure 1(a),
and is named R-SLIP.

The qualitative behavior of the R-SLIP model is similar
to that of the compliant half-circular leg. When the R-SLIP
model rolls on the ground, the ground-contact point moves
forward as the circular leg does. In the meantime, because the
distance between the ground-contact point and the torsion
spring changes accordingly, the equivalent linear stiffness
between the mass and ground contact point varies. Therefore,
the compliance change in the circular leg during locomotion
can be captured in the R-SLIP model as well. Table 2 lists the
stiffness trends of the half-circular material and the R-SLIP
model. The symbols ks and kt indicate the stiffness of the
material and R-SLIP, respectively. The stiffness data is nor-
malized by the stiffness at which the contact point is located
at PE (i.e., with subscript, 180). The table also lists the

absolute difference of the deformation directions between the
material and the model, δ , and these two directions are
plotted in figure 2(e) as well (dotted magenta line segments
and dash-dotted green line segments). The stiffness increasing
trends of the model is less than that of the material, and in
most occasions the percentage error is less than 20%. In
addition, the absolute deformation direction differences are
less than 10° when the leg rolls at the lowest one third of the
leg. In summary, the quantitative characteristics of the half-
circular material can be captured by the R-SLIP model in a
reasonable manner.

Note that though the morphology of the R-SLIP model is
originated from the behavior of the half-circular material, the
main purpose of developing the R-SLIP model is not to
merely find a model whose behavior is accurately matched to
the half-circular material, but to define a general template
with the following characteristics: (i) having rolling behavior;
(ii) having as few parameters as possible; (iii) providing
the abstract model which can represent the compliant
rolling material as closely as possible. From this aspect, the
simplification by relocating the torsion spring on the circular
rim is quite important. The number of parameters of the
R-SLIP model in the present form is four, one more than the
SLIP model. Owing to the low parameter number, we are able
to do the model analysis as completely as possible and to
compare its behavior to the SLIP model in a fair manner.

3. Formulation of the R-SLIP dynamic model

Figure 1(a) depicts the composition of the R-SLIP model. It
has two segments connected by a torsion spring. The lower
rigid segment is part of a circular rim, thus performing rolling
behavior during its ground contact period. The spring con-
stant of the torsion spring is assumed to be fixed, which is
easier for analysis and simulation. The upper rigid link con-
nects the torsion spring and a point mass. When the spring is
in its natural configuration, the mass is located on the circular
rim as well (i.e., with the same distance to the center of the
circular rim as the radius of the circular rim). Therefore, the
R-SLIP model has four intrinsic parameters: radius of the
circular rim (r), stiffness of the torsional spring (kt), mass (m),
and distance between the torsion spring and the mass (l). In
contrast, the SLIP model has three parameters: length of
spring, stiffness of spring, and mass as shown in figure 1(b).

Similar to the SLIP model, a full running stride of the R-
SLIP model can be divided into stance phase and flight phase

Table 1. Stiffness of the circular material along with the
principal axes.

θI 180 165 150 135 120 105 90

ks 0.09 0.10 0.13 0.16 0.21 0.30 0.45
kh 0.84 1.19 1.79 2.85 4.86 9.03 18.74
k k/h s 9.49 11.51 14.18 17.81 22.90 30.32 41.77

Table 2. Stiffness characteristics of the half-circular material and the
R-SLIP model.

θI 180 165 150 135 120 105 90

k k/ ss ,180 1 1.18 1.44 1.82 2.42 3.39 5.10

k k/ tt ,180 1 1.11 1.27 1.51 1.91 2.67 4.52

δ (°) −3.6 −0.1 3.3 6.6 9.9 13.1 16.2
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as shown in figure 3(a). In flight phase, the R-SLIP model
moves according to the ballistic model, where the forward
motion is at constant speed and the vertical motion is affected
by gravity. With a pre-determined landing angle β , touch-
down occurs and the stance phase begins when the height of
the mass to the ground is less than β+r r sin ( ). Owing to the
landing momentum, the R-SLIP model rolls on the ground
and the torsion spring is simultaneously compressed. At a
certain moment the spring starts uncompressing. Right after
the torsion spring returns to its natural configuration, the R-
SLIP model lifts off and the flight phase begins. If the R-SLIP
model moves stably, its motion is composed of these two
phases alternating periodically.

The quantitative dynamic behavior of the R-SLIP model
in stance phase can be investigated by constructing its
dynamic model by the Lagrangian method. The angles θ and

ϕ are utilized as the generalized coordinates as depicted in
figure 3(b). The angle θ is defined as the angle included by
the horizontal line and the line segment connecting the torsion
spring and the mass, l. The angle ϕ represents the compres-
sion level of the torsion spring, and is defined as the angle
included by l and the line connecting the torsion spring and
the center of the circular rim. Following these definitions, the
Cartesian coordinates of the mass in the stance phase, x z( , )s s ,
can be represented as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ϕ ϕ θ θ ϕ θ θ
ϕ θ θ

= − − + − − +
+ − +

( )x
z

r r l

r r l

cos( ) cos

sin( ) sin
, (8)s

s

0 0

where the subscripts s of x z( , ) and 0 of θ and ϕ indicate the
stance phase and natural configuration, respectively. The
kinetic energy, T , and potential energy, V , can be formulated
as
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( sin( ) sin ). (9)

2 2

2 2 2

t 0
2

The latter includes gravitational and elastic potential
energies. The symbol g represents the gravity constant.
Assuming motion of the R-SLIP model in the stance phase is
pure rolling without sliding, the ground reacting force does
not contribute. Therefore, the system is energy conservative
and the following equations hold:
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By importing (9) into (10) and rearranging the equations,
the double derivatives of the generalized coordinates, θ ̈ and ϕ ̈
can be expressed as nonlinear functions of other state vari-
ables θ θ ϕ θ ϕ ϕ θ ϕ θ ϕ̈ = ̇ ̇ ̈ = ̇ ̇( ) ( )A B, , , , , , , . Therefore,
the equations of motion of the R-SLIP model in its stance
phase can be expressed in the state-space form
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B

d

d , , ,

, , ,

. (11)

The state of the mass can be derived by importing the
solutions of (11) into (8) or its derivative. On the other hand,
the motion of the R-SLIP model in its flight phase is ballistic
and affected by gravity only, so the equations of motion of the

Figure 3. The R-SLIP model: (a) Illustrative sketch of its running
motion with stance phase and flight phase. The variables for defining
the touchdown state are also presented. (b) The parameters utilized
in the development of the modified SLIP model. (c), (d) Two
extreme conditions where the numerical simulation of the R-SLIP
model fails. (e) Trajectory and (f) ground reaction force of the R-
SLIP model during locomotion.
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R-SLIP model can be described as

⎡
⎣⎢

⎤
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⎦
⎥⎥=

+ ̇
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1

2

, (12)f

f

LO LO

LO LO
2

where the symbols f and LO indicate the flight phase and lift-
off, respectively. Figures 3(e) and (f) show a typical trajectory
and ground contact force of the R-SLIP model during
locomotion.

4. Preparation for model performance analysis

4.1. Continuous running of the R-SLIP model

The R-SLIP model described in (11) and (12) is a con-
servative system. Thus, the system dynamics in a full stride,
including both stance and flight phases, can be numerically
evaluated with four preset system parameters (r k m l, , ,t ) and
chosen system initial conditions (ICs). The ICs of the model
are usually given at the moment of touchdown (i.e., beginning
of the stance phase), which includes landing angle β( ),
touchdown speed (v), and touchdown angle included by the
touchdown velocity and horizontal line α( ) as shown in
figure 1(a). With these definitions, the ICs of state variables
shown in (11) can be represented as
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where subscript td indicates the moment of touchdown. Note
that the torsion spring is in its natural configuration at the
moment of touchdown.

If the R-SLIP model runs properly in stance phase, at a
certain moment it will initiate its flight phase. If its vertical
velocity and acceleration meet the criteria

̇ >
̈ = −

z

z g

0
, (14)

s

s

the model lifts off. Note that this condition is also equivalent
to the zero ground reaction force or the leg springing back to
its natural length. In addition, two conditions should be
satisfied for continuous running: (i) the horizontal velocity of
the model at lift-off is forward

̇ >x 0, (15)LO

and (ii) height of the model at apex is large enough, so the
follow-up touchdown with preset landing angle β( ) after

ballistic flight is feasible:

β+ ̇ > +z
z

g
r r

2
sin . (16)LO

LO
2

In short, equations (14) to (16) are essential to grant the
existence of the next stance phase. Since the energy of the
model in flight phase is conservative and the landing angle β( )
is preset, the touchdown speed (v) at every touchdown is the
same. Moreover, touchdown angle of the model in its next
stance phase can be defined as

⎜ ⎟⎛
⎝

⎞
⎠α =

̇x

v
arccos . (17)LO

By importing these values into (13) and then into (11),
dynamic behavior of the model in its next stance phase can be
simulated. With the same iteration method, the continuous
running behavior of the model from stride to stride can be
derived.

The numerical simulation may fail when the R-SLIP
configures in two extreme conditions as shown in figures 3(c),
(d)—when the torsional spring contacts the ground as shown
in figure 3(c), and when the mass, torsion spring, and contact
point align in a line segment as shown in figure 3(d). In both
cases the torque generated by the torsional spring cannot be
balanced. In the follow-up steps-to-fall analysis, these two
cases are regarded as the same as other falling down
conditions.

4.2. Setup for comparison with the SLIP model

In addition to reporting the performance of the R-SLIP model,
the SLIP model is also reported for better understanding of
the characteristics and differences caused by the structure of
rolling contact and torsional spring. Thus, the equivalent
linear spring stiffness of the R-SLIP model needs to be
defined, where the k10% rule utilized in [29] is adopted in the
analysis. The k10% is the linear spring’s stiffness at which the
spring’s length is compressed to 10%. Because the natural
linear spring length of the model varies when the ground
contact point changes, it is set equal to the diameter of the
circular rim =( )l r20 , at which the mass is located right
above the ground contact point as shown in figure 4. The
angle ϕ10% of the R-SLIP model while its equivalent linear
spring is compressed to 10% can be expressed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ϕ =

+ −−

( )
l l l

l l
cos

2( )
(18)a b

a
10%

1
2 2 2

with

= −l l la 0
2 2 and =l l0.9b 0.

The associated linear spring force F is

⎜ ⎟
⎛
⎝

⎞
⎠

π ϕ

ϕ
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( )( )
F

l k

l l

2

( ) sin
. (19)
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Thus, and the equivalent linear spring stiffness k10% is

=k F l0.1 . (20)10% 10% 0

To make the touchdown conditions of both R-SLIP and
SLIP models similar and comparable, in the following ana-
lysis their landing angles are set differently but with similar
geometrical configurations as shown in figure 1. In this
definition, the landing angle of the SLIP model (βSLIP) has a
relationship to that of the R-SLIP model (βRSLIP) defined as
β π β= +/4 2SLIP RSLIP .

4.3. Setup for dimensionless analysis

Dimensional analysis is adopted in the paper for generalized
analysis. Because the model development is aimed for future
robotic applications, the method of generating dimensionless
analysis is based on the characteristics of the empirical robot
systems. Among four system parameters and three ICs of the
R-SLIP model, three system parameters (r m l, , ) are gen-
erally fixed in given empirical systems. In contrast, the last
system parameter kt can be utilized for system tuning, and
three ICs ( α βv, , ) can be manipulated during locomotion.
More specifically, the compliance kt of the robot legs can be
fabricated to a specifically designed value for stable running.
The touchdown speed (v) and touchdown angle α( ) of the
robot can be adjusted through leg control in the previous
stance phase during running. The landing angle (β) of the
robot can be adjusted in the flight phase. Therefore, in the
following analysis, the system parameters (r m l, , , i.e., robot
mass and dimensions) are considered fixed, while the system
parameter kt and three ICs ( α βv, , ) are subjected to var-
iance. The system parameters m r(  , ) of the R-SLIP model
and m l  ,   0 of the SLIP model, as well as the standard gravity
g, are utilized for generating dimensionless parameters,
which include:

Dimensionless stiffness of the torsional spring
=k k mgl˜ /( )t t 0 ,
Dimensionless stiffness of the linear spring =k kl mg˜ /( )0 ,
Dimensionless landing angle β β=˜ ,
Dimensionless touchdown speed =v v gl˜ / 0 ,

Dimensionless touchdown angle α α=˜ ,
Note that =l r20 in the R-SLIP model.

5. Steps-to-fall performance of the R-SLIP model

Steps-to-fall is a quantitative index of the dynamic model,
which reveals how many steps the model can perform
dynamically (i.e., with stance and flight phases) without
falling down. This index has been used in [29, 36, 37]. With a
given set of ICs, if the model can run with more steps than the
preset threshold, it is considered stable. The threshold is set to
24 strides, the same as that reported in the literature [36, 37].
Our initial investigation revealed that performance of the
model with 24 strides as threshold is similar to that with 100
or more strides. Although stability of the model cannot be
precisely judged by steps-to-fall analysis, this index does
reveal the stability trend of the model, which helps with the
follow-up return map analysis of detailed stability property
and state transition from stride to stride. In addition, because
graphic representation of the analysis is suitable for variations
of two variables, the touchdown angle α̃ and landing angle β̃
are chosen to be varied from π0 ~ /2, which covers all rea-
sonable angles of these two variables. The other two out of
four factors, k̃10% and ṽ, are fixed in each plot, and their
variations are plotted in different sub-figures next to each
other.

Figure 5 plots steps-to-fall analysis of the SLIP model
and the R-SLIP model with four given touchdown speeds and
three different spring stiffnesses. The color bar at the bottom
of the plot indicates the number of strides the system can
perform before it falls. The results of steps-to-fall analysis
reveal several facts. (i) For comparison of the subplots with
different touchdown speeds (i.e., horizontal direction), the
stable region increases if the touchdown speed increases. If
the touchdown speed is too low, the stable region merely
exists. Thus, when touchdown speed of the model with a
given fixed stiffness increases, the model can stably run with
a larger variation of landing angles. (ii) The suitable landing
angle increases while the stiffness ( )k k˜ or 1̃0% increases. The
phenomenon is similar to the two-segment leg model reported
in [29]. In contrast, the suitable landing angle decreases while
the touchdown speed ṽ increases. (iii) For each subplot, the
suitable landing angle for stable running is limited to a small
range. By comparison, the touchdown angle can tolerate a
large variation. (iv) In the R-SLIP model, there appears a
second cluster of the stable region in the high touchdown
speed and low stiffness case, and this phenomenon will be
discussed in section 6. (v) The stable region of the R-SLIP
model is larger than that of the SLIP model under the same
parameter settings. Thus, the R-SLIP model can tolerate a
larger disturbance during running. In addition, owing to its
rolling characteristics, the R-SLIP model with large touch-
down angle has a stable running region, which is not observed
in the SLIP model.

If the R-SLIP model can be regarded as the ‘template’, of
the empirical legged robot [4], the trends and results of the
model shown in steps-to-fall offer some positive lessons for

Figure 4. Configuration of the R-SLIP model where the equivalent
linear spring stiffness k10% is defined.
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Figure 5. Steps-to-fall analysis of (a)–(l) the SLIP model and (m)–(x) the R-SLIP model with four touchdown speed =ṽ 1,1.5, 2 and 2.5 and
three spring stiffness =( )k k˜ or ˜ 10, 20, and 3010% . The regions with different colors indicate the number of consecutive steps the model can

perform before it falls down. The color bar at the bottom shows the relation between the colors and the numbers of steps.
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designing and controlling legged robot locomotion. The
touchdown speed is directly linked to the energy of the
robotic system, and it is hard to alter. In contrast, the landing
angle and touchdown angle are easier to be disturbed in the
empirical system. As a result, these two angles should be well
controlled for stable locomotion. As shown in figure 5, the
stable running of the robot with given leg stiffness and
touchdown speed requires a very precise landing angle but
much less constraint on the touchdown angle, no matter how
stiff the leg is. This leads to the conclusion that, between these
two angles, the landing angle is the main factor needing
control. This is good news because the landing angle in
general can be directly controlled by leg configuration (i.e.,
by joint motors). In contrast, the touchdown angle is mainly
determined by the take-off and ballistic flight conditions,
which are hard to control. The significance of choosing an
adequate landing angle for the robot’s cyclic motion is also
mentioned in [6].

Furthermore, the results of steps-to-fall are in line with
reported animal behaviors, which suggest that animals extend
their stride length while increasing their running speed [38].
The steps-to-fall analysis shows that the model tends to
decrease its landing angle while the touchdown speed
increases for stable running. In fact, the outcome of lowering
the landing angle is equal to increasing the stride length. This
observation implies that the R-SLIP model can not only be
utilized as a control guidance for a RHex-style robot with
half-circular legs, but is also suitable for understanding ani-
mal behaviors.

6. Return map analysis of the R-SLIP model

In addition to the steps-to-fall analysis which provides rough
trends of the model’s stability, return map analysis was
conducted to evaluate in detail the state transition from stride
to stride and to search for fixed points. In this single-step
analysis, the stability is judged by the relationship of a spe-
cific variable x between its current ith state and its next i+ 1th
state as

=+x f x u( , ), (21)i i i1

with

α
β

=
=

x
u

,
,

where u is the control input of the system. The fixed point
exists when the next state of this variable is the same as its
current state

= =+x x x* . (22)i i1

The dimensionality of the model determines the method
of performing return map analysis. The dimensionality of the
R-SLIP model is similar to that of the SLIP model by merely
having one more geometrical parameters. The R-SLIP needs
two parameters (r l, ) to define the configuration, and the SLIP
model only needs one (l0). The remaining two parameters
m k( , ) and three ICs ( α βv, , ) are similar. In general the

variation of the variables ( α βk v, , ,t ) should be taken into
account for return map analysis. However, as with the ana-
lysis process of the SLIP model, some assumptions and
intrinsic properties help to reduce the complexity of the
problem. The landing angle β is regarded as a ‘control input’
because it can be empirically controlled on the robot. Fol-
lowing this, the touchdown speed v is automatically fixed at
the touchdown moment to conserve energy. In addition, it is
also reasonable to freeze the stiffness of the torsion spring k,
as is widely used on the SLIP. As a result, only the touch-
down angle α is an undetermined factor to be investigated,
and the process is very similar to that of the SLIP model.
Therefore, the analysis is regarded as a 1-dimensional pro-
blem. In this one-dimensional case, the eigenvalues of the
Jacobian matrix within the unit disk is equal to the slope
condition of the fixed points:

<+x

x

d

d
*

1. (23)
i

i x

1

Among four variables α β( )k v˜ , ˜, ˜, ˜10% , the touchdown
angle α̃ is selected for return map analysis because, in the
empirical system, this state is usually passively determined by
other states and is hard to control. By investigating its return
map, it can be revealed how stably the system runs. The range
of the touchdown angle in the plot covers the whole adequate
range π0 ~   /2, and the landing angle varies with π /36
increment (i.e., 5°).

Figure 6 plots the return maps of both SLIP and R-SLIP
models, and several observations can be addressed. (i) The
analysis results of the return map match those of the steps-to-
fall. Taking the SLIP model with =k̃ 10 and =ṽ 2 as an
example (i.e., figures 5(c) and 6(b)), the steps-to-fall analysis
indicates that the stable region exists when the landing angle
β is around °50 and the touchdown angle α is between °0 and
30°. Correspondingly, the return map analysis shows exis-
tence of a stable fixed point located at α = °10 and β = °50 .
(ii) Regarding the R-SLIP model, taking condition =k̃ 2010%
and =ṽ 2 as an example (i.e., figures 5(s) and 6(h)), if the
model with a small touchdown angle (e.g., °10 ) lands on the
ground with an adequate landing angle (i.e. around β = °˜ 55 ),
its motion is stable owing to the existence of stable fixed
points. If the model has a larger landing angle (e.g., 65°), the
motion becomes unstable. In addition, figure 5(s) reveals that
the model with different landing angles has a similar trend.
For example, the model with a landing angle β( ) higher than
50° will gradually decrease its touchdown angle during run-
ning, and vice versa. The stable fixed point of the SLIP model
exists only when the touchdown angle is small. In contrast,
the R-SLIP model with both low and high touchdown angles
can be stabilized. For example, several stable fixed points
exist at a high touchdown angle as shown in figure 6(f), and
this result matches that in the steps-to-fall analysis as shown
in figure 5(o).

Figure 6 also reveals that the major difference between
the SLIP model and the R-SLIP model lies in the layout of all
curves. The curves of the R-SLIP model are more con-
centrated around the line =x y, and these curves have small
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Figure 6. Return map of (a)–(d) the SLIP model and (e)–(h) the R-SLIP model with two touchdown speed =( )ṽ 1 and 2 and two spring

stiffness ( =k k˜ or ˜ 10 and 2010% ). Curves with different colors represent different landing angle β .

11

Bioinspir. Biomim. 9 (2014) 046004 K-J Huang et al



slopes. In contrast, those of the SLIP model are scattered.
This observation implies that motion of the SLIP model is
more sensitive because the touchdown angle may have a
larger variation from stride to stride. This phenomenon sug-
gests that the stable region of the R-SLIP model is larger than
that of the SLIP model, consistent with the observation
obtained in figure 5. In addition, figure 6 can also serve as the
guideline for robot control when the robot runs with the R-
SLIP/SLIP model as the template. By actively adjusting the
landing angle in real time, motion of the robot can converge
to the state where the stable fixed point is located.

It is important to understand the locations and trends of
fixed points within the overall parameter space, especially
when the analysis serves as the guideline for empirical robot
control. Figure 7 plots distribution of the fixed points of the
R-SLIP model and the SLIP model. Basically, the fixed points
on the line =y x (i.e., the red straight line) shown in figure 6
form a curve in figure 7. Because there are four variables in
the dimensionless analysis ( α βk v˜ , ˜, ˜, ˜10% ), and each plot can
only contain variations of three variables, variation of the
fourth variable is presented in different subfigures. Note that,
to simplify model comparison, the x-axis of sub-figures
(a)–(c) are all converted into touchdown notation of the R-
SLIP, β −

˜
R SLIP, by the method described in section 4.2. The

figure reveals several facts: (i) the stability property of the R-
SLIP or SLIP model with low touchdown speed (i.e. =ṽ 1.0)
is not promising. The R-SLIP model has few stable fixed
points when the stiffness is low, and the SLIP model has no
stable point. Low touchdown speed implies low system
energy. In this case, when the leg stiffness is comparably
high, the model cannot keep moving forward because the leg
spring compresses and decompresses too fast, which stops the
mass from moving forward and pushes it backward. (ii) When
the model’s energy level gets higher (i.e. =ṽ 2.0 or 3.0), both
models appear to have more stable fixed points. Though
distribution of the stable fixed points of the R-SLIP model
appears more irregular than that of the SLIP model, the R-
SLIP model has stable fixed points with all ranges of stiffness.
In contrast, the SLIP model has no stable fixed point in the
case of =ṽ 2.0 and =k̃ 5 and of =ṽ 3.0 and =k̃ 5, 10.
Thus, with a given energy level of the model, the R-SLIP
model can tolerate a wider range of stiffness. (iii) Considering
the SLIP model with a specific stiffness, when the touchdown
speed increases, the fixed points in the figure move left, which
indicates that the associated landing angle decreases. In
contrast, the associated touchdown angle remains similar. As
for the R-SLIP case, when the touchdown speed increases, the
change of fixed point distribution of the R-SLIP model is
irregular. One clear observation is that the stable fixed point
exists at a wide range of touchdown angles. In addition to the
original cluster of stable fixed points extending its associated
touchdown angles, another cluster of stable fixed points
appears with high values of touchdown angles. For example,
when =k̃ 2010% and =ṽ 3.0, the R-SLIP model has one
cluster of stable fixed points where the touchdown angle
ranges from 5° to 56°, and another cluster where the touch-
down angle ranges from 60° to 78°. This observation implies
that the R-SLIP model can generate not only running but also

hopping motion as the sketches show in figure 7(f). The
dynamic motion of the R-SLIP model seems to have a wider
variation than that of the SLIP model. (iv) No fixed point
exists when the models have high landing angles and low
touchdown angles (i.e., lower right corner of the figures). In
this case, the models pose vertically but the touchdown
velocity lies horizontally, where the spring can barely be
compressed, so the model falls. (v) The R-SLIP model has
scattered stable fixed points at very high landing and touch-
down angles, which is not observed in the SLIP model. The
motion sequence of the R-SLIP model in this condition is
plotted in figure 8. After the model touches down, it rolls back
when the torsional spring compresses. Thus, though the mass
keeps moving forward, the ground contact point actually
moves backward. With the right momentum of the mass
which pulls the leg rolling forward, the follow-up motion of
the model is similar to other ordinary cases. In contrast to the
SLIP model which contacts the ground at a specific point for
each stance phase, the R-SLIP model has rolling contact. In
normal cases the ground contact point of the model in stance
phase moves forward. Though the motion shown in figure 8 is
unusual, it does demonstrate a special characteristic owing to
the unique rolling contact of the R-SLIP model.

Distribution of the fixed points shown in figure 7 reveals
that change of the stiffness on model stability is similar to
change of touchdown speed. The effect of increasing the
touchdown speed is at some level equivalent to decreasing the
spring stiffness. The touchdown speed represents the amount
of kinetic energy preserved in the system. In contrast, the
spring stiffness represents how much and how quickly the
energy can be stored as the spring potential. Thus, for a
system with a given mass, one would expect these two factors
to match each other in a certain range for stable and con-
tinuous running. To further investigate the relation between
these two factors, we have computed the number of stable
fixed points in each parameter setting (k v˜, ˜) within a wide
range of the above parameters and present the results in
figure 9. Note that numbers of stable fixed points is also
determined by the precision of numerical computation; in this
plot 2° is utilized. In this demonstration the absolute value of
the numbers is not the main concern, but the relative value is.
Several observations can be made: (i) there exists a lower
limit of touchdown speed of the model for stable running. (ii)
When the system energy increases (i.e., ṽ increases), the
stiffness range of the model for stable running increases, and
the stiffness value also increases as expected. (iii) The stable
region of the R-SLIP model is larger than that of the SLIP
model.

The trends observed in figure 9 matches reported animal
behavior, wherein leg stiffness increases when running faster
[29, 39]. Thus, when animals want to run faster and keep
locomotion stable without dramatic adjustment of body state,
simultaneous adjustment of leg stiffness and landing angle is
an effective strategy. In contrast, for those robots with pure
passive compliant legs where stiffness is not adjustable, the
robot can only stabilize its running locomotion by adjusting
its landing angle. In that case, the achievable range of stable
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running will be limited, so selection of nominal stiffness is
important.

Figure 9 can also be utilized for finding the dynamic
locomotion region of the robot. The robot’s forward velocity
is usually preset and limited by the power of the actuator, so
the corresponding range of landing speed v can be roughly
estimated. According to the analysis results, the suitable
stiffness of the robot can be chosen based on the information
provided in figure 9. For example, if the desired running

speed of the robot with a half-circular leg is about =ṽ 3, the
adequate stiffness for creating stable manner is around

=k̃ 2010% .
The return map analysis of the R-SLIP model confirms

that the model has ‘self-stable’ gaits, just like the SLIP model
[40]. With adequate ICs α βv( , , ), and system parameters

( )r k m l, , ,t , the model can stably run at or around the fixed
point without control effort. Thus, if the robot can be operated
to run like the R-SLIP model within its self-stable region, the

Figure 7. The fixed points of the SLIP model (a)–(c) and the R-SLIP model (d)–(f) with various parameter settings. The dimensionless
touchdown speeds are 1.0 in (a), 2.0 in (b), and 3.0 in (c), respectively. The dimensionless stiffness ranges from 5 to 30, shown in different
styles and colors of markers. Solid and hollow markers represent stable and unstable fixed points, respectively.
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power imported to the robot would only be used to overcome
mechanical loss and disturbance from the environment. The
robot should run very efficiently. Figure 7 also reveals that the
usable ranges of landing angle and touchdown angle for
stable running are wide, especially for the model with larger
touchdown speed. Taking = =v k˜ 3 and ˜ 2510% as an example
(i.e. orange squared markers in plot (f)), the stable range of
the touchdown angle of the R-SLIP model can be nearly as
wide as 85°. Under the same conditions, the SLIP model can
allow only a 15° variation of its touchdown angle for stable
running. In addition, because the touchdown angle is gen-
erally determined by take-off and ballistic conditions of the
model, it is very easy to be disturbed. A wide allowable
touchdown angle for stable running is truly an advantage.

7. Using the R-SLIP model as the template for a
RHex-style robot for dynamic running

The promising intrinsic stability of the R-SLIP model sug-
gests that it may be a good template [4] for dynamic running
on a multi-legged robot. Because the planar R-SLIP model
contains only a point mass, it is often used to represent the
center of mass (CoM) motion of the robot in the sagittal
plane. This setting defines how the original complex platform
(i.e., the ‘anchor’) collapses to the low-DOF R-SLIP model
(i.e., the ‘template’). With this definition, the remaining DOFs

of the platform should be maintained at stable values or no
effect on motion of the R-SLIP model, including the lateral
motion and orientation of the platform. If the above criteria
are held, then the platform should ideally behave like the R-
SLIP model. Through experimental investigation, we have
found that the empirical robot implemented with this strategy
can indeed directly excite its dynamic running behavior (i.e.,
with flight phase) without any parameter tuning or trajectory
modification. The details will be described in the following
paragraphs.

The RHex-style robot shown in figure 10(a) is utilized for
the above ‘template and anchor’ experimental evaluation.
RHex originated from the University of Michigan [13]. It is a
hexapod robot with only one active rotational DOF per leg,
with each leg made with compliant materials, mimicking the
elastic behavior of running animals [1]. The robot utilized
here is a reproduced version of RHex, with similar mor-
phology but different size, weight, mechatronic setup, and
control architecture. Detailed specifications can be found in
[41]. While designing the robot, the leg stiffness is approxi-
mately selected based on the mouse-to-elephant curve [42]
and the natural frequency of the one-dimensional hopper,
where [43] has more details. The widely-used alternating
tripod gait is adopted as the fundamental robot gait for these
running experiments owing to its advantages of stable and fast
locomotion. The legs in a tripod provide stable motion of the
spatial rigid robot body (i.e., less pitch and roll). In addition,
the two tripods are programmed to move in an alternating and
symmetric manner; thus the robot should ideally move
straight ahead (i.e., with less lateral displacement and yaw
motion). As a result, motion of the four un-modeled DOFs of
the real robot should have minimum variations.

Figure 10(b) shows the schematic motion sequence of the
robot with a tripod gait and the R-SLIP model, the motion
mapping between the ‘template and anchor’. Because the
robot is set to move like the R-SLIP model, a full stride
should include a stance phase and flight phase. In order to let
the CoM move like the R-SLIP model in the stance phase,
three legs of the tripod are synchronically actuated and rotated
according to the R-SLIP trajectory while they roll on the
ground. Based on the assumption that the robot body remains
horizontal during the whole stance phase, the leg orientation
with respect to the body is actually equal to the generalized
coordinate θ of the R-SLIP model as shown in figure 10(b).
On the other hand, the period of the leg in its flight phase
takes much longer than that of the R-SLIP model because the
two tripod legs are alternating. The flight phase of the leg
covers two flight phases and one stance phase of the R-SLIP
model as shown in figure 10(b).

The quantitative model-robot mapping and the motion
design procedure is described as follows. The mass m and leg
radius r of the model are based on the measurements of the
empirical robot. The torsional stiffness kt and the link length l
of the model are simultaneously computed by the least
squared errors of the measured force-deflection relations of
the robot leg at various contact positions. The detailed process
can be found in [43]. As a result, the four intrinsic parameters
of the R-SLIP model ( )r m l k, , , t can be yielded. Note that

Figure 8. (a) The motion sequence in stance phase of the R-SLIP
model with high touchdown speed and large touchdown angle. (b)
The mass trajectory of the resulting hopping motion.

Figure 9. Numbers of stable fixed points of the R-SLIP model (a)
and the SLIP model (b) within a range of touchdown speeds and
stiffness.
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the model stiffness is set to three times the robot leg stiffness,
to calibrate the single leg and the tripod locomotion of the
model and robot. Table 3 lists the key parameters for analysis.
Next, the three ICs should be selected. Among these, the
touchdown speed is first to be designated because it strongly
relates to the energy level of the robot. The empirical actua-
tion device of the robot should be strong enough to provide
enough leg actuation power to achieve the desired speed.
Empirical investigation shows that the robot can run from

−1 m s 1 to −2 m s 1. Thus, speeds within this range and with an
increment of −0.25 m s 1 are chosen for experiments. Finally,
the touchdown angle and landing angle are selected based on
the results of stability analysis described on sections 5 and 6.

Figure 11 shows distribution of the fixed points where
the parameters are matched to the robot specifications. This
figure reveals that no stable fixed point exists while the robot
runs with a touchdown speed of −1 m s 1 or −1.25 m s 1. When
the speed equals or exceeds −1.5 m s 1, the stable fixed points
appear. For the low-speed case, because unstable fixed points
appear with the touchdown angle α = ° − °15 90 , so α = °20
is selected. For the medium- to high-speed case, the smaller
touchdown angle α = °10 is selected for less variation on
vertical displacement. Thus, with selected v and α, the land-
ing angle β can be selected. With defined intrinsic parameters

Figure 10. Setup for ‘template and anchor’ experiments: (a) the RHex-style robot for experiments; (b) schematic motion sequence of the
robot with a tripod gait and the corresponding motion of the R-SLIP model.

Figure 11. Fixed points distribution of the R-SLIP model with
parameter settings matching the empirical robot.

Table 3. Parameters for running experiments.

Robot specifications

Body mass M 6.884 kg
Body length L 0.47 m
Body width W 0.23 m
Body height H 0.17 m
Leg radius R 0.075 m

R-SLIP model parameters

Mass m 6.884 kg
Leg radius r 0.075 m
Rigid bar length l 0.082 m
Torsion spring stiffness k t 22.8 Nm rad−1

Dimensionless torsional spring constant k̃ t 2.25
Equivalent linear spring stiffness k10% 4276.6 N m−1

Dimensionless equivalent linear spring
stiffness

k̃10% 9.50
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and selected ICs, the complete trajectory of the R-SLIP model
can be numerically computed, including the states of both
stance phase and ballistic flight phase. Trajectory of the model
in the stance phase is directly coded for leg actuation. Time
durations of both phases of the model are used to compute the
flight-phase time of the leg. With a complete leg trajectory
programmed, the robot is now ready for ‘template and
anchor’ experimental evaluation.

Experiments were executed with the ground truth mea-
surement system (GTMS) to yield true body state. The GTMS
is composed of two 500 Hz high-speed cameras (A504k,
Basler) and two 6-axis force plates (FP4060-07, Bertec). The
high-speed cameras were mounted on the top right and left
sides of the runway. When a bright marker was placed within
the runway, its spatial coordinate could be reconstructed from
two simultaneously-captured images from two cameras. By
installing three bright LEDs on top of the robot, the spatial 6-
DOF body state could be derived according to the geometrical
relations between the markers and the robot’s CoM. Six-axis
force plates were placed in the middle of the runway to
capture the force interaction between the robot and the
ground. A detailed description of the GTMS can be found
in [41].

Figure 12 shows the velocity and ground reaction force
of the robot versus time. The videos of the robot running with
these conditions are included in the supplementary materials.
The horizontal axis is normalized to one period of the R-SLIP
model, and the actual periods are 0.223 s, 0.225 s, 0.183 s,
0.180 s, and 0.174 s, respectively. The figure reveals that the
vertical velocities of the robot match those of the R-SLIP
model quite well in all touchdown speeds. In contrast, the
forward velocities of the robot only match the model when
the touchdown speeds are low. When the speed increases, the
velocity profiles remain similar but the achieved speeds seem
lower than those of the model (about 0.1 m s−1 less). This
discrepancy primarily results from ground slippage, which
diverges the empirical behavior away from the model which
assumes pure rolling contact. The force profiles of the robot
and the model exhibit some discrepancy, but the trends
remain similar to each other. We suspect this is mainly owing
to the complex dynamics of the half-circular leg which is not
able to be revealed in the reduced-order R-SLIP model. More
specifically, the shape deformation of the R-SLIP model may
catch the actual deformation pattern of the half-circular leg,
which makes the velocity profiles resemble each other.
However, during deformation the compliance effect of the leg
and the model may not be the same; thus the force profiles
appear with some magnitude of difference. Nevertheless the
force profiles clearly show that the robot performs dynamic
running behavior, where the vertical force profile has a single
compression and the forward force profile has a brake-then-
accelerate pattern, similar to the reduced-order spring-mass
models such as the SLIP or R-SLIP model. In addition, the
robot motion also exhibits an obvious flight phase, revealed in
the portion with zero vertical ground reaction force. In sum,
the robot can initiate its dynamic running behavior with the
profiles based on the R-SLIP model.

Table 4 gives a statistical summary of the robot pitch
and roll. The results are averaged from all experimental runs.
Note that, even though the robot ran with pre-defined R-
SLIP-based trajectories with no pitch or roll control strategy,
the means of both pitch and roll were all less than °0.6 with
stds less than °2.2 . Thus, the tripod locomotion formed by
three compliant legs has a certain internal stabilization
mechanism which keeps the body orientation changes small.
This observation also confirms that the tripod approximated
by a single ‘virtual leg’ utilized in this paper can be held. If
the mean is not close to zero or the std is large, three legs of
the same tripod may move according to different trajectories.
In addition, pitch stds of the robot with α = °10 are in
general smaller than those with α = °20 . The robot with the
smaller touchdown angle during running has less leg com-
pression, and the torque generated from unbalanced
empirical leg compression is less, so the pitch variation of
the robot during running can be maintained in a smaller
range.

The behavior of the robot implemented with the SLIP
model as the template was also evaluated. The fixed points of
the SLIP model were searched for, and then the stable tra-
jectories with conditions similar to those shown in figure 12
were implemented on the robot for experimental evaluation.
The videos of the robot running with these conditions are
included as supplementary materials. The videos clearly show
that the robot implemented with SLIP trajectories performs
walking locomotion (i.e., no moment where all legs are in the
air) but cannot initiate running behavior as the SLIP model
does. The robot also exhibits considerable pitch variation. In
contrast, the robot implemented with R-SLIP trajectories
indeed performs running behavior, for all experiments with
different forward speed settings. The means and standard
deviations of the ratios of the flight phase time to one period
of the R-SLIP model and the robot are 0.235(0.066) and
0.242(0.073), respectively, and the results are quite similar to
each other. The main reason for the SLIP’s failure results
from the discrepancy of the leg driving pattern as shown in
figure 13. The figure reveals that the robot implemented
with the R-SLIP trajectories has a monotonic decreasing
motor speed during stance phase, but that with SLIP trajec-
tories has a speed close to constant, similar to the Buehler
Clock setting [14]. This discrepancy yields incorrect leg
spring compression/decompression patterns of the robot for
dynamic motion.

The experimental results reported in this section reveal
that, through correct mapping between ‘template and anchor’,
dynamic behavior of the original complex system can indeed
be initiated via the reduced-order model. Here, though the R-
SLIP model may not perfectly capture the dynamics of the
empirical, complex, and multi-legged robot, the strong
resemblance between them offers the possibility of using the
former to excite the dynamics of the latter. Without any
parameter tuning, the parameters which make the R-SLIP
model run also make the robot run, not only for one specific
parameter set but for all five different sets. We believe this
achievement is significant, since, in the past development of
RHex, the initiation of its dynamics was not trivial. The

16

Bioinspir. Biomim. 9 (2014) 046004 K-J Huang et al



Figure 12. Velocity and ground reaction force of the robot (means, middle blue curves; top and bottom bars, standard deviations) and the R-
SLIP model (red dashed curves) versus time. The symbols ( )v v f f, , ,x z x z denote forward velocity, vertical velocity, forward ground reaction

force, and vertical ground reaction force, respectively. The horizontal axis is normalized to one period of the R-SLIP model.
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parameterized Buehler Clock is very useful in developing
various walking gaits for rough terrain negotiation [14]. At
that time, without carefully investigating the ‘template’ of
RHex, initiation of its dynamic behavior was done through
the optimization procedure. By setting energy-efficiency as
the cost function, the robot after optimization performs a
stable jogging gait. This is quite interesting, but provides
limited insight in how to initiate running in continuous var-
iation (i.e., with varying speeds or profile appearance). The
approach reported in this paper provides the methodology of
using merely a 2-DOF system as the ‘template’ to guide the
dynamic behavior of the complex hexapod robot. Ideally, if
the leg is precisely built according to the leg morphology of
the R-SLIP model, the similarity in dynamic performance
between the model and the robot may be higher. However,
empirically it is still very challenging to build a lumped linear
spring leg or torsional spring leg with extremely light weight.
Thus, though the mapping of the half-circular leg of the robot
to the R-SLIP leg may not be perfect, its light weight helps to
keep motion similarity to a certain level. In short, the meth-
odology and results reported here serve as the first and fea-
sible important steps in developing the template-based
dynamic behavior on the empirical robots.

8. Conclusion

We report on the development of the spring loaded inverted
pendulum model with rolling contact (i.e., R-SLIP). On the
analytical side, we would like to construct a simple model
with rolling contact. By comparing its performance to the
well-known SLIP model with similar simple morphology, we
can understand how rolling affects the dynamic locomotion of
the model. On the practical side, we would like to utilize the
R-SLIP model as the reduced-order model of the compliant
circular-shape material because the former is inspired by the
linear elasticity model of the latter. Furthermore, from
defining detailed mapping between the R-SLIP model and the
empirical RHex-style robot with half-circular legs, the con-
cept of ‘template and anchor’ can be experimentally
evaluated.

The developed planar R-SLIP model has four intrinsic
parameters. Compared to the SLIP model, one extra geo-
metric parameter is introduced to compensate for the change
of linear spring to torsional spring. Unlike the SLIP model
that has point contact with the ground, the circular lower
segment of the R-SLIP model exhibits rolling behavior to the
ground. The quantitative formulation of the R-SLIP model
was derived from the Lagrangian method, and steps-to-fall
and return map were utilized for model behavior and stability
analysis. The former examines whether the model with a
specific set of parameters and ICs can successfully perform
stable running for a specific number of strides without falling
down. In contrast, the latter method provides a single step and
one-dimensional analysis of the model from stride to stride. In
addition, in order to perform a quantitative comparison to the
SLIP model, the k10% method and dimensionless analysis
were utilized.

The stability analysis of the R-SLIP model reveals several
facts. First, as with the SLIP model, the R-SLIP model has self-
stable gaits (i.e., with stable fixed points), and the stable region
of the latter model is in general larger than that of the former.
As the stiffness or touchdown speed of the model increases, the
stable region of the model increases accordingly (i.e., the range
of adequate landing angle for stable locomotion increases).
Also, for a model of given stiffness and touchdown velocity to
have stable locomotion, the touchdown angle can be varied
within a wide range; in contrast, only a narrow range of landing
angles can be selected. This phenomenon is actually good for
empirical robot implementation because the landing angle can
usually be directly controlled by leg configuration. In contrast,
the touchdown angle is hard to control because it is mainly
determined by the take-off and ballistic flight conditions. In
addition, for the R-SLIP model with parameters in a certain
range, the stable fixed points seem to be distributed in two
clusters—one for regular running and the other for one-
dimensional hopping, which is not observed in the SLIP
model.

The R-SLIP model was embedded as the reduced-order
‘template’ in a more complex ‘anchor’, the RHex-style robot,
via a simple open-loop control strategy and some mapping
definitions. We chose several parameters and ICssets of the R-
SLIP model with stable running, and then directly deployed

Table 4. Statistical summary of robot pitch and roll in experiments.

Initial conditions Roll (°) Pitch (°)

v (m s−1) α (°g) Mean std Mean std

1.00 20 −0.13 1.99 0.02 1.39
1.25 20 0.17 1.99 −0.13 1.96
1.25 10 −0.43 2.12 0.59 1.09
1.50 10 −0.36 1.78 0.20 1.07
1.75 10 −0.58 1.74 0.29 1.23

Figure 13. Stance-phase leg driving profiles of the robot imple-
mented with the R-SLIP model, SLIP model, and the Buehler Clock.
(a) and (b) plot different running conditions. The actual periods of
the SLIP model and R-SLIP model in (a) and (b) are 0.134, 0.154,
0.116, and s0.142 , respectively.
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these settings as the actuation commands of the empirical
robot. By comparing motion of the R-SLIP model and the
robot as well as the forward and vertical ground reaction
forces, the trends of both trajectories match quite well. The
robot can easily initiate its dynamic behaviors with flight
phase with several different touchdown speeds without too
much control effort. In addition, the close-to-zero means (less
than 0.6°) and small standard deviations of robot body pitch
and roll (less than 2.2°) during locomotion indicate that the
extra DOFs of the empirical robot outside the R-SLIP model’s
DOFs maintain the stable value as assumed. Thus, the R-SLIP
model can indeed serve as the template for the robot for
dynamic locomotion. In contrast, the robot implemented with
SLIP trajectories cannot initiate dynamic running behavior,
and this further confirms that the template should be designed
based on the robot’s natural dynamics.

We are currently investigating the template-based closed-
loop control strategy, so that the robot will be able to perform
dynamic locomotion as well as behavior transition in a wider
range of parameter settings. Also under investigation is the
underlying mechanism whereby the robot’s leg trajectory fails
to match its natural dynamics, to the detriment of overall
performance.
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