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Abstract—We report on the development of the model for 
running locomotion with rolling contact, R-SLIP, to simulate 
the motion of the robot with circular legs. Thus, two significant 
characteristics which cannot be correctly modeled in the 
traditional SLIP, rolling contact with varied equivalent linear 
spring during locomotion, can be adequately captured. The 
stability of the R-SLIP model was analyzed numerically by 
varying the factors which affects the dynamic performance of 
the model, including stiffness of the torsion spring, touchdown 
angle, touchdown speed, and landing angle. In addition, the 
return map was utilized to check the state transition of the 
touchdown angle with given other three factors. The results 
reveal that the R-SLIP model has self-stable gaits, just like the 
traditional SLIP. Thus, with adequate initial conditions and 
system parameters, the model can run stably around the fixed 
point without control effort. 

I. INTRODUCTION 

he natural environment is in general rough and 
diversified. After a long evolution process, most ground 

animals are evolved with agile and robust legs, and these legs 
are capable of allowing animals to move elegantly and rapidly 
over uneven terrain. Though geometrical configurations and 
evolved stages of the legs vary significantly, researchers 
found that through the adequate motion coordination among 
the legs, animals’ dynamic locomotion in the sagittal plane 
can be approximated by a simple mathematical model “SLIP” 
(Spring-Loaded Inverted Pendulum) [1-3], where the body is 
treated as a point mass and the legs are approximated by a 
massless spring. The SLIP model is energy conservative; 
however, it is widely recognized as the intrinsic and 
qualitative representation of the ground animals’ running 
behavior. As a running “template”, SLIP model indeed 
provides a prescriptive control guidance [4, 5] to the original 
complex biological or robotic systems which represents 
empirical “anchors” by sketching the actuation joints and 
rigid structures [6]. Thus, in the past few decades the 
successfulness of the dynamic behavior development of the 
legged robots is roughly judged by the similarity of the 
robot’s motion characteristics to that of the SLIP model, 
which in general has the potential and kinetic energy 
exchange as well as has the aerial phase during locomotion. 
    The study of dynamic robotic systems was initiated by the 
development of monopods in the 80s [7], and following that 
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various quadruped and hexapod robots were reported. For 
example, the Scout series [8], Tekken series [9], Sprawl series 
[10-12], RHex [13, 14], etc. In addition, the dynamical 
climbing robot has been reported as well [15]. Possibly owing 
to the limited power density of commercial motors, the 
excitation of the dynamical behaviors of current robots 
mostly relies on the adequately allocation of compliant parts 
which can store and release potential energy in the right 
timings. For example, the hexapod RHex has only one 
rotational degree of freedom (DOF) per leg, but it can easily 
generate SLIP-like jogging behavior with its compliant legs 
[16, 17]. In addition, it also has great ability to negotiate 
rough terrain owing to the strategy of full-rotation leg 
reposition. The hexapod iSprawl has carefully tuned leg 
compliance, and it can be driven by a single motor and 
generates SLIP-like locomotion [10]. 
    However, empirical evaluation reveals that design and 
fabrication of the ideal linear spring with strong resistance to 
the lateral force is challenge. In contrast, it is feasible to 
fabricate and form compliant material into circular shape. 
Thus, this type of legs is adopted in many robot designs [18], 
and hereafter it is referred to as the “circular leg.” The circular 
leg has two significant intrinsic characteristics different than 
those of the traditional SLIP model. First, instead of point 
ground-contact, the ground-contact of the circular leg exhibits 
rolling behavior, and the ground-contact point gradually 
shifts forward during motion. Second, owing to the rolling 
contact, the compliance of the leg simultaneously changes 
during motion. Thus, a new dynamic template is desired to 
model the behavior of the circular leg. A two-segment model 
with point-contact [19] as well as an ordinary SLIP with a 
small rolling foot (SLIP-R) [20] have been studied before. 
However, these two models cannot capture two 
characteristics described above. Considering those 
characteristics, here we propose a new SLIP model with 
rolling behavior (i.e., referred to as R-SLIP) to simulate the 
motion of circular leg.  
   Section II describes the proposed R-SLIP model, and 
Section III reports the dynamics of the model. Section IV 
concludes the work. 

II. ROLLING SLIP MODEL 

The compliant circular leg exhibits the rolling behavior 
between the leg and the ground, and this characteristics 
deviates the behavior of the robot locomotion away from the 
traditional SLIP model with point ground on two prospects: (i) 
the equivalent linear leg stiffness varies while the ground 
contact point changes; (ii) the rolling motion yields the 
forward movement of the robot body. To realistically take 
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these two characteristics into account, a modified SLIP model 
named R-SLIP is developed as shown in Fig. 1(a). It has two 
segments connected by a torsion spring. The lower rigid 
segment is part of a circular rim, thus representing the original 
rolling behavior of the circular leg. The spring constant of the 
torsion spring is assumed fixed. The upper rigid segment 
connecting the torsion spring and a point mass. When the 
spring is in its natural configuration, the mass is located on 
the circular rim as well (i.e., with the same distance to the 
center of the circular rim as the radius of the circular rim). 
Therefore, the R-SLIP has four intrinsic parameters: radius of 
the circular rim (ݎ), stiffness of the torsion spring (ܭ௧), mass 
(݉), and the distance between the torsion spring and the mass 
(݈) as shown in Fig. 1(a). In contrast, the traditional SLIP has 
three parameters: length of the spring, stiffness of the spring, 
and mass as shown in Fig. 1(b).  

The qualitative behavior of the R-SLIP model likes that of 
the compliant circular leg. When the R-SLIP model rolls on 
the ground, because the distance between the ground-contact 
point and the torsion spring changes accordingly, the 
equivalent linear stiffness changes, which is defined by the 
stiffness along with the direction of the ground-contact point 
and the mass. Therefore, the compliance change in the 
circular leg during its motion can be modeled in the R-SLIP 
as well.  

Like the traditional SLIP model, a full running stride of the 
R-SLIP model can be divided into stance phase and flight 
phase as shown in Fig. 2(a). In the flight phase, the R-SLIP 
moves according to ballistic model, affected by the gravity 
only. With pre-determined landing angle ߚ, when the height 
of the mass to the ground is less than ݎ ൅ ሻߚሺ݊݅ݏݎ , the 
touchdown occurs and the stance phase begins. Owing to the 
landing momentum, the R-SLIP model rolls on the ground 
and the torsion spring is compressed simultaneously. At 
certain moment the spring starts uncompressing. When the 
torsion spring returns to its natural configuration, the R-SLIP 
model lift-offs and the flight phase begins. If the R-SLIP 
moves stably, the motion is composed of these two phases 
and switched periodically.  

The dynamic behavior of the R-SLIP model in the stance 
phase can be constructed by the Lagrangian method. The 
angles  ߠ and ׎ are utilized as the generalized coordinate and 
are depicted in Fig. 2(b).  The angle ߠ is defined as the angle 
included by the horizontal line and the line segment 
connecting the torsion spring and the mass, ݈. The angle ׎ 
represents the compression level of the torsion spring, and it 

is defined as the angle included by ݈ and the line connecting 
the torsion spring and the center of the circular rim. Following 
these definitions, the Cartesian coordinates of the mass in the 
stance phase, ሺݔ௦,  ௦ሻ, can be represented asݕ
௦ݔ ൌ ׎ሺݎ െ ଴׎ െ ߠ ൅ ଴ሻߠ െ ݎ ׎ሺݏ݋ܿ െ ሻߠ ൅ ݈  ሻߠሺݏ݋ܿ
௦ݕ ൌ ݎ ൅ ݎ ׎ሺ݊݅ݏ െ ሻߠ ൅  ሻ                                    , (1)ߠሺ ݊݅ݏ݈

where the subscripts ݏ of ሺݔ,  indicate the ׎ and ߠ ሻ and 0 ofݕ
stance phase and natural configuration, respectively. The 
velocity state can then be derived as  
ሶ௦ݔ ൌ ሺ1ݎ ൅ ׎ሺ ݊݅ݏ െ ሶ׎ሻሻ൫ߠ െ ሶ൯ߠ െ ሶߠሻߠሺ݊݅ݏ݈  

ሶ௦ݕ ൌ ׎ሺݏ݋ܿݎ െ ሶ׎ሻ൫ߠ െ ሶ൯ߠ ൅ ሶߠሻߠሺݏ݋݈ܿ          . (2) 

Following (1) and (2), the kinetic energy ܶ  can be formulated 
as 
ܶ ൌ ݉ሼݎଶሾ1 ൅ ׎ሺ݊݅ݏ െ ሶ׎ሻሿ൫ߠ െ ሶ൯ߠ

ଶ
൅ ሻ׎ሺݏ݋ሺ݈ܿݎ െ ሶ׎ሻ ሻ൫ߠሺ݊݅ݏ ሶߠ െ ሶߠ ଶ൯ ൅

ଵ

ଶ
݈ଶߠሶ ଶሽ , (3) 

and the potential energy ܸ is  
ܸ ൌ

ଵ

ଶ
଴׎௧ሺܭ െ ሻଶ׎ ൅ ݉݃൫ݎ ൅ ׎ሺ݊݅ݏݎ െ ሻߠ ൅  ሻ൯ , (4)ߠሺ݊݅ݏ݈

which includes gravitational and elastic potential energies. 
Assuming the rolling motion is pure without sliding, the 
ground reacting force does not contribute. Therefore, the 
energy of the system is conservative and the following 
equations are held 
ௗ
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డ׎
ൌ 0 . (5) 

By importing (3) and (4), equation (5) cam be expressed as 

݉

ۉ

ۈ
ۇ

 ሺ2ݎଶሺ1 ൅ ׎ሺ݊݅ݏ െ ሻሻߠ െ ሻ׎ሺݏ݋ሺ݈ܿݎ2 െ ሻሻߠሺ݊݅ݏ ൅ ݈ଶሻߠ ሷ

 ൅൫െ2ݎଶሺ1 ൅ ׎ሺ݊݅ݏ െ ሻሻߠ ൅ ሻ׎ሺݏ݋ሺ݈ܿݎ െ ሷ ׎ሻሻ൯ߠሺ݊݅ݏ  

൅ ቆ
െݎଶ ׎ሺݏ݋ܿ െ ሻߠ ൫׎ሶ െ ሶ൯ߠ

ଶ
െ ሶ׎ሻ൫׎ሺ݊݅ݏ݈ݎ ଶ െ ሶ׎2 ሶ൯ߠ ൅ ሶߠሻߠሺݏ݋݈ܿݎ ଶ

൅݃൫݈ܿݏ݋ሺߠሻ െ ׎ሺݏ݋ܿݎ െ ሻ൯ߠ
ቇ 
ی

ۋ
ۊ

ൌ 0 

Fig. 1.  Intrinsic parameters of (a) the R-SLIP model and (b) the SLIP 
model.   

Fig. 2.  The R-SLIP model: (a) ilustrative sketch of its running motion 
with stance phase and flight phase. The variables for defining the 
touchdown state is also presented. (b) the parameters utilized in the 
development of the modified SLIP model.  
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଴׎௧ሺܭ െ ሻ׎ ൌ 0 . (6) 
And (6)can be expressed as 

ቈ
a1ሺθ, ሻ׎ b1ሺθ, ሻ׎

a2ሺθ, ሻ׎ b2ሺθ, ሻ׎
቉ ቈθ

ሷ

ሷ׎
቉ ൌ ൥

c1ሺθ, θሶ,׎ , ሶ׎ ሻ

c2ሺθ, θሶ,׎ , ሶ׎ ሻ
൩ 

ቈθ
ሷ

ሷ׎
቉ ൌ ቈ

a1ሺθ, ሻ׎ b1ሺθ, ሻ׎

a2ሺθ, ሻ׎ b2ሺθ, ሻ׎
቉

ିଵ

൥
c1ሺθ, θሶ,׎ , ሶ׎ ሻ

c2ሺθ, θሶ,׎ , ሶ׎ ሻ
൩ ൌ ൥

Aሺθ, θሶ,׎ , ሶ׎ ሻ

Bሺθ, θሶ,׎ , ሶ׎ ሻ
൩ 

Therefore, the differential equations of motion could be 
expressed in the state-space form 

ௗ

ௗ௧
൦

ߠ
׎
ሶߠ
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൪ ൌ

ۏ
ێ
ێ
ێ
ۍ ሶߠ

ሶ׎

,ߠሺܣ ,׎ ሶߠ , ሶ׎ ሻ
,ߠሺܤ ,׎ ሶߠ , ሶ׎ ሻے

ۑ
ۑ
ۑ
ې
. (7) 

Together with initial conditions, the dynamic motion of the 
R-SLIP model in the stance phase can be simulated 
numerically. 

In the flight phase, the motion is ballistic and affected by 
gravity only, so the equations of motion can be described as 
௙ݔ ൌ ௅ைݔ ൅  ݐሶ௅ைݔ

௙ݕ ൌ ௅ைݕ ൅ ݐሶ௅ைݕ െ
ଵ

ଶ
 ଶ  ,  (8)ݐ݃

where the subscript ݂  and ܱܮ  indicate the flight phase and 
liftoff, respectively. 

III. DYNAMICS OF THE R-SLIP MODEL 

The R-SLIP model shown in (7) and (8) is a conservative 
system. Thus, the system dynamics in a full stride, including 
stance and flight phases, can be evaluated with pre-set four 
system parameters, (ݎ, ,݉,௧ܭ ݈ ), and chosen initial system 
conditions. The initial system conditions are usually given at 
the moment of touchdown (i.e., begin of the stance phase), 
which includes model landing angle ሺߚሻ,  touchdown speed 
( ௔ܸ௠௣ ), and touchdown angle included by the touchdown 
velocity and horizontal line ሺߙሻ as shown in Fig. 2(a). With 
these definitions, the initial system conditions can be 
converted to  
ሶ௦ݔ ൌ ௔ܸ௠௣ܿݏ݋ ሺߙሻ 
ሶ௦ݕ ൌ ௔ܸ௠௣݊݅ݏ ሺߙሻ 
௜௡௜ߠ ൌ ߨ െ ௜௡௜׎ െ  ߚ

൤ߠ
ሶ
ሶ׎
൨ ൌ ൤

െݎሺ1 ൅ ௜௡௜׎ሺ݊݅ݏ െ ௜௡௜ሻߠ െ ௜௡௜ሻߠሺ݊݅ݏ݈ ሺ1ݎ ൅ ௜௡௜׎ሺ݊݅ݏ െ ௜௡௜ሻߠ
െݏ݋ܿݎሺ׎௜௡௜ െ ௜௡௜ሻߠ ൅ ௜௡௜ሻߠሺݏ݋݈ܿ ௜௡௜׎ሺݏ݋ܿݎ െ ௜௡௜ሻߠ

൨
ିଵ

൤
ሶ௦ݔ
ሶ௦ݕ
൨ , (9) 

where subscript ݅݊݅  indicates the moment of touchdown. 
Please also note that ׎௜௡௜ is equal to ׎଴ since the torsion spring 
is uncompressed in the flight phase. The converted 
parameters shown in (9) can be imported into (7) for 
simulation in the stance phase. 

For stable running, at certain moment the system should 
change its status from the stance phase to the flight phase. The 
lift-off moment can be evaluated by the state of vertical body 
acceleration and velocity. If the above state meets the 
equations shown below 
ሷ௦ݕ ൌ െ݃   
ሶ௦ݕ ൐ 0 ,  (10) 

the system will lift-off. In addition, two necessary conditions 
should be satisfied for continuous running: (i) the horizontal 
velocity at lift-off is in the forward direction 
ሶ௅ைݔ ൐ 0 , (11) 

and (ii) the height of the system at lift-off is high enough, so 
the follow-up touchdown with preset landing angle ሺߚሻ after 
ballistic flight is feasible 

௅ைݕ ൅
௬ሶಽೀ

మ

ଶ௚
൐ ݎ ൅  ሻ.  (12)ߚሺ݊݅ݏݎ

In short, equation (10)-(12) are the essential criteria to grant 
the existence of next stance phase. Since the energy is 
conservative in flight phase as shown in (8) as well as the 
landing angle ሺߚሻ is preset, the touchdown speed ( ௔ܸ௠௣) at 
every touchdown is the same. Moreover, the touchdown 
angle for the next stance phase can be defined as 
ߙ ൌ ሺ ݏ݋ܿܽ

௫ሶಽೀ
௏ೌ ೘೛

ሻ .  (13) 

By importing these values into (9) and then into (7), 
simulation of the next stance phase can be executed. With the 
same iteration method, the simulation of continuous running 
from stride to stride can be performed. 

The R-SLIP model is numerically evaluated according to 
the method described above, and its stability is judged by 
whether the system can perform periodic locomotion with 
stance and flight phases without falling down, similar to the                 
method reported in [21].A specific number of strides is set as 
the threshold; if the system can run stably above this number, 
it is considered stable with this set of parameters. Since with 
high threshold, like 100 strides, the results are similar to about 
25 strides; however the tendency of stability is not so clear, 
the threshold is set to 25 strides. As described in the first 
paragraph of this section, there are 4 system parameters and 3 
initial conditions. While system parameters ( ,݉,ݎ ݈ ) are 
generally fixed in given systems, the last parameter ܭ௧  is 
usually reserved for system tuning. On the other hand, three 
initial conditions (ߚ, ௔ܸ௠௣, ௔ܸ௡௚ ) may be controlled during 
locomotion. The touchdown speed ௔ܸ௠௣  and touchdown 

angle  are determined by lift-off conditions before this 
ballistic flight; therefore, they could be adjusted through leg 
control in the last stance phase. In addition, the landing angle 
 could be adjusted in the flight phase as long as the flying ߚ
height is high enough for leg reconfiguration. As a result, in 
the simulation, system parameters (ݎ,݉, ݈ ) are set to the 
values accordingly to the hexapod robot in the lab (ݎ ൌ
60݉݉,݉ ൌ 3.7 3⁄ ؆ 1.23݇݃, ݈ ൌ 68݉݉  ) [22], and ܭ௧ , 
together with three initial conditions (ߚ, ௔ܸ௠௣, ௔ܸ௡௚ ), are 
varied to check system stability. The varied ranges of these 4 
variables are selected accordingly to the empirical system as 
well. The graphic presentation is suitable for at most two 
variables. Thus, among 4 factors in total, (ܭ௧, ,ߚ ௔ܸ௠௣,  two ,(ߙ
factors are fixed and the other two are varied in each set of 
simulation, and there exist 6 sets of variations.  

Figure 3 shows the simulation results of these 6 sets of 
variations and several characteristics can be observed. The 
color bar shown on the right side indicates the number of 
strides the system can perform before it fails. Figure 3(a) 
reveals that with fixed touchdown velocity ( ௔ܸ௠௣ and ߙ), the 
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system could be stabilized by selecting the suitable landing 
angle, except for the system with very soft torsion spring. For 
the system with stiffer torsion spring, the larger landing angle 
is required. However, the stable region is very narrow. Any 
imperfect setting or disturbance would destabilize the system 
very quickly. Figure 3(b) shows that with fixed landing angle 
ሺߚሻ and relative angle of the touchdown velocity (ߙ), the 
system is unstable for very soft spring or small touchdown 
velocity. The stiffer torsion spring also requires larger 
touchdown speed to stabilize the system, and the allowable 
range of speed increases as well. Figure 3(c) reveals that with 
fixed landing angle ሺߚሻ and stiffness of the torsion spring 
 the system is unstable for small touchdown speed. With ,(௧ܭ)
larger speed, the range of the landing angle for stable running 
is larger, but the angle should be decreased. Figure 3(d) 
shows that with fixed stiffness of the torsion spring (ܭ௧) and 
touchdown speed ( ௔ܸ௠௣), the system can be stable with very 
precise mapping between the landing angle and relative angle 
of the touchdown velocity. Figure 3(e) indicates that with 
fixed landing angle ሺߚሻ and stiffness of the torsion spring 
 the touchdown speed should be resided in two specific ,(௧ܭ)
ranges to let the system stable. In addition, when this criterion 
is satisfied, the suitable range of the relative angle of the 

touchdown velocity is very large. Figure 3(f) shows that with 
fixed touchdown speed ( ௔ܸ௠௣) and landing angle (ߚ), the 
system can be stable with only very narrow range of spring 
stiffness. When the stiffness is right, the relative angle of the 
touchdown velocity can be varied in certain range. There 
exist two stable regions of parameters. The one with lower 
stiffness requires larger relative angle of the touchdown 
velocity. In contrast, the one with higher stiffness requires 
smaller relative angle of the touchdown velocity.  

The touchdown speed ( ௔ܸ௠௣) shown in Figure 3 is selected 
according to the measurements from the physical system. 
Because the selected values are just located on the edge of 
stable region as shown in Figure 3(b), it is intuitively that the 
stable region plotted in the other plots will be narrow. It also 
indicates that with higher touchdown speed and stiffer spring, 
the stable range might be larger. Therefore, the size of stable 
region is mainly decided by the collocation of stiffness of 
torsion spring and touchdown speed. The analysis described 
above shows that with predefined mass and radius of circular 
leg, the adequate touchdown speed and stiffness of torsion 
spring of the robot for stable locomotion can be roughly 
known from Figure 3(b) since the reasonable touchdown 
angle and landing angle are in small range. On the contrary, if 
the stable speed and stiffness are not available, the radius of 
circular leg may need to be adjusted. After the speed and 
stiffness have been decided, the precise stable landing angle 
and touchdown angle are not too hard to be found through 
simulation of Figure 3. 

Though Fig. 3 provides the rough estimation of the system 
stability, how the states changes from strides to strides and the 
states at fixed point cannot be revealed. Therefore, the return 
map is utilized for further analysis. Because stiffness of the 
torsion spring, landing angle and touchdown speed may be 
easier to control than that of the touchdown angle, the return 
map is utilized to check the state transition of the touchdown 
angle with given other three factors (ܭ௧, ,ߚ ௔ܸ௠௣). The results 
are shown in Fig. 4 (a)-(c), where in each sub-figure two of 
the factors are fixed and the other one is varied within certain 
range. Figure 4(a) plots the return maps with fixed landing 
angle and stiffness of the torsion spring, and the touchdown 
speed within range ௔ܸ௠௣ ൌ 0.5 െ ݏ/݉ 3.0  are varied with 
rough increment 0.25 ݉/ݏ, wherein range ௔ܸ௠௣ ൌ 1.5 െ 2.5 
are selected to vary with fine increment 0.1 ݉/ݏ because of 
the existence of stable fixed points. When the touchdown 
speed is low (i.e., 0.5 െ 1.25), the increment is about half to 
one fifth of touchdown speed, so the touchdown angle of next 
step with these speeds varies greatly. In the meantime, since 
the system does not have enough kinematic energy to roll 
over enough angles before lifts off, the touchdown angle of 
next step is too high for stable motion. Therefore, the 
trajectories don’t cross the line which passes through the 
original with slope 1, and no fixed point exists. The results 
match the results shown in figure 3(e) as well. While the 
touchdown speed resides within 1.5 െ ݏ/݉ 1.7  and the 
energy of system is high enough, there exists a fixed point 
located around low touchdown angle. It is a stable fixed point 

Fig. 3. Number of strides the system can run before failure. When the 
system can successfully run 25 strides, it is considered stable. There are 
4 variables in total, (ܭ௧, ,ߚ ௔ܸ௠௣,  ,.Thus, in each set of simulation (i.e .(ߙ
each figure) two factors are fixed and the other two are varied. There 
exist 6 sets of variations shown in (a)-(f), respectively. The fixed factors 
and their value are shown on top of each sub-figure, and the varied 
factors are simulated within the range shown in horizontal and vertical 
axes.  
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since the slope of the trajectory around this fixed point is 
located between the interval [-1 1]. For example, in the case 
of ௔ܸ௠௣ ൌ 1.6, the stable range of the touchdown angle is 
within 5 െ 50° as shown in Fig. 4(d). The system with the 
state near this fixed point would approach and stay around 
this stable fixed point. The stable region increases while the 
touchdown speed. While the magnitude of the touchdown 
velocity resides in 1.8 െ  there is no fixed point and ,ݏ/݉ 2.0
the system is unstable. While the magnitude of the touchdown 
velocity resides in 2.1 െ ݏ/݉ 2.2 , a stable fixed point 
appears again but located at higher relative angle of the 
touchdown velocity. For even higher magnitude, two fixed 
points exist, but none of them is stable.  The return maps with 
varying landing angle (ߚ) and stiffness of the torsion spring 
 ௧ܭ are shown in Fig. 4(b) and 4(c). The first one fixes (௧ܭ)
and varies ߚ ൌ 0 െ 90° with increment 5°, and the second 
one fixes ߚ   and varies  ܭ௧ ൌ 1 െ ݀ܽݎ/10ܰ݉  with 
increment 1ܰ݉/݀ܽݎ . Figure 4(b) shows that the large 
landing angle would lead to a large touchdown velocity angle 
in substance, and with a correct landing angle, the system 
with small touchdown angle can be stabilized owing to the 
existence of the stable fixed point. In contrast, the system 
with large touchdown angle cannot be stabilized by any 
landing angle, except for the 90°  case, where the system 

behaves like a 
1-dimensional hopper 
moving vertically. In 
reality, however, the 
circular legs may not 
behave well with high 
touchdown speed and 
large touchdown angle 
since the large 
deformation may fatigue 
the empirical legs. 
Figure 4(c) reveals that 
the effect of stiffness of 
the torsion spring on 
stability is similar to that 
of touchdown speed. The 
effect of increasing 
touchdown speed is in 
certain level equivalent 
to decreasing stiffness of 
the torsion spring since 
the ratio of them relates 
to the exchange of 
kinematic and potential 
energy of system and the 
exercise of system is just 
the process of it. The 
touchdown speed 
represents the amount of 
kinetic energy preserved 
in the system. In contrast, 
the stiffness of the 

torsion spring represents how much and how quick the energy 
can be stored in the spring potential. Thus, for a system with 
given mass, intuitively these two factors should be matched in 
certain range to let the system run continuously. On the other 
hand, the landing angle and touchdown angle would also 
affect how much kinematic energy transfer to potential 
energy and the lift-off velocity angle. The lift-off velocity 
angle decides the touchdown angle of next step; so a well 
tuned landing angle makes touchdown angle converge to a 
fixed number and let system stable. Furthermore since the 
touchdown speed directly determines the energy of system 
but the landing angle and stiffness of spring are just about the 
energy transformation, the tendency of return map with 
different speed change more rapidly than with different 
landing angle and stiffness of spring.  

The return map shown in figure 4 reveals that the R-SLIP 
model has “self-stable” gaits, just like the traditional SLIP 
model reported in [23]. With adequate initial conditions, 
ሺߚ, ௔ܸ௠௣, ,ݎ) ,and system parameters ,(ߙ ,݉,௧ܭ ݈), the system 
can run stably at the fixed point without control effort. Thus, 
if the robot can be operated to run within the self-stable region, 
the required power input would be merely for overcoming the 
mechanical damping and disturbance from environment. It 
can run very efficiently. The results shown in Fig. 4 indicate 
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Fig. 4.  The return map of the R-SLIP model: (a) Varying the amplitude of the touchdown velocity from 0.5 to 3.0 m/s; 
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that stable range in touchdown speed and touchdown angle is 
wide, especially the latter one. Thus, if the touchdown speed 
(i.e., ௔ܸ௠௣ ൌ 1.7m/) is controlled perfectly, the stable range 
of the touchdown angle can be spanned as wide as 80°. This 
is one of the special characteristics the traditional SLIP model 
doesn’t have. Because the touchdown angle is the hardest to 
control, this characteristics is indeed advantageous. In 
addition, the touchdown speed can be adjusted by actively 
change the rotating speed of the legs in the stance phase. 
Though it might be hard to be controlled precisely, the stable 
running is still feasible since the stable region of the 
touchdown speed is not small. On the other hand, the control 
of the landing angle is the most crucial one since its stable 
region is small. Nevertheless, it is also the easiest to control 
by leg positioning in the flight phase. 

IV. CONCLUSION 

 We report on the development of the model for running 
locomotion with rolling contact, R-SLIP, to simulate the 
motion of the robot with circular legs. Thus, two significant 
characteristics which cannot be correctly modeled in the 
traditional SLIP, rolling contact with varied equivalent linear 
spring during locomotion, can be adequately captured. The 
dynamic equations of the model were derived based on the 
Lagrangian method. Then, the stability of the R-SLIP model 
was analyzed numerically by varying the factors which 
affects the dynamic performance of the systems, including 
one system parameter, stiffness of the torsion spring, and 
three initial conditions, including touchdown angle, 
touchdown speed, and landing angle. In addition, the return 
map was utilized to check the state transition of the 
touchdown angle with given other three factors. The results 
reveal that the R-SLIP model has self-stable gaits (i.e., with 
stable fixed points), just like the traditional SLIP. Thus, with 
adequate initial conditions and system parameters, the system 
can run stably around the fixed point without control effort. 

We are currently in the process of analyzing the 
performance similarity and difference between the empirical 
high-order circular leg and the reduced-order R-SLIP model, 
so the realization of the model onto the real robot can be more 
realistic. In parallel, we are also trying to directly implement 
the stable gait of the R-SLIP model onto the hexapod robot, to 
evaluate the performance of the model experimentally.  
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