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Abstract—We report on the design and implementation of a 
simple bio-inspired hexapod driven by a single motor. Aiming 
for generating the dynamic locomotion of the robot, the design is 
based on the motion of a spring loaded inverted pendulum 
(SLIP) and then expanded to the hexapod morphology. The 
required speed variations and phase offsets of legs are achieved 
by utilization of non-circular gear pairs in the transmission 
system. Thus, the robot can be driven by a single DC motor 
without control effort. The designed alternating tripod gait 
allows the robot to adequately negotiate with rough terrain as 
well as to excite dynamic running behavior. The performance of 
the robot is evaluated experimentally and is quantitatively 
compared to the SLIP model. 

I. INTRODUCTION 

fter evolution process, most ground animals are evolved 
with agile and robust legs, allowing the animals to move 

elegantly and rapidly over uneven terrain. Thus, research of 
the legged robots mainly focuses on how to create the 
maneuverability and to generate animal-like dynamic 
locomotion. The study of dynamical robotic systems was 
initiated by the development of monopods in the 80s [1], and 
following that, various multi-legged robots were developed 
and reported. For example, the quadruped Scout series [2], 
quadruped Tekken series [3], hexapod Sprawl series [4, 5], 
hexapod RHex [6, 7], etc. 
     Owing to the bio-inspired legged morphology, how to 
create bio-inspired locomotion in the legged robots is one of 
the main approaches to perform robot behavioral 
development. Though geometrical configurations and 
evolved stages of the animal legs vary significantly, 
researchers found that through the adequate motion 
coordination among the legs, animals’ dynamic running 
locomotion in the sagittal plane can be approximated by a 
simple mathematical model “SLIP” (Spring-Loaded Inverted 
Pendulum) [8-10], where the body is treated by a point mass 
and the legs are approximated by a massless spring. As a 
running “template”, SLIP model indeed provides a 
prescriptive control guidance to the original complex 
biological or robotic systems which represents empirical 
“anchors” by sketching the actuation joints and rigid 
structures [11]. Thus, in the past few decades the 
successfulness of the dynamic behavior development of the 
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legged robots is roughly judged by the similarity of the 
robot’s motion characteristics to that of the SLIP model. For 
example, the hexapod RHex has only one rotational degree of 
freedom (DOF) per leg, but it can easily generate SLIP-like 
jogging behavior with its compliant legs. In addition, it also 
has great ability to negotiate rough terrain owing to the 
strategy of full-rotation leg reposition. The hexapod iSprawl 
has carefully tuned leg compliance, and it can be driven by a 
single motor and generates SLIP-like locomotion. 
    Inspired by the morphology of RHex with bio-inspired 
tripod gaits [6] as well as the transmission strategy of iSprawl 
[4], here we report on the development of a new hexapod 
robot which has RHex-style configuration and is driven by 
only one motor. The planar coordinate system in general has 
three DOFs, and the platform with 2 motion DOFs (i.e., like 
cars) already has enough mobility to perform planar 
locomotion. Of course a robot with high active DOFs in 
certain level is equivalent to high maneuverability and ground 
adaptiveness. Even though, it is worth to address the 
feasibility of designing a legged robot to perform versatile 
behaviors such as walking, running, rough terrain negotiation 
by simple robotic morphology with minimum number of 
active DOFs. 

The design process started from understanding the 
dynamic motion of the SLIP model and then expanded its 
morphology to the hexapod structure because it could deploy 
the intrinsically stable 2-beat tripod gait for locomotion. In 
order to create the robust “tripod posture” (i.e., having three 
legs stand on the ground) at any moment with appropriate 
stride frequency, worm and worm gear pairs and non-circular 
gears pair were utilized in the transmission system. In 
addition, the legs of the robot should act like a spring as the 
linear spring of the SLIP model. Empirical evaluation 
revealed that design and fabrication of the ideal linear spring 
with strong resistance to the lateral force was challenge. In 
contrast, fabrication of a single-piece material in ring shape 
with piece cut out was feasible. Thus, the leg with circular 
shape was adopted in the final robot design, and hereafter the 
leg is referred to as the “circular leg”. And it was evaluated 
experimentally that the behavior of the robot with dynamical 
gait indeed fits with the SLIP model. 
    Section II and Section III describes the design strategy and 
design of the transmission system, respectively.  Section IV 
discusses the modeling of the circular leg. Section V reports 
the experiment evaluation, and Section VI concludes the 
work. 
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II. CONSIDERATION AND STRATEGY OF ROBOT DESIGN 

Figure 1(a) depicts the SLIP model, which has three system 
parameters: length of the spring (݈), stiffness of the spring (ܭ), 
and mass (݉). A full running stride of the SLIP model can be 
divided into stance phase and flight phase as shown in Fig. 
1(b). The dynamics of the SLIP model in the stance phase can 
be derived based on the Lagrangian method. As depicted in 
Fig. 1(a), angle ׎  and the leg length ݈  are utilized as the 
generalized coordinates. Cartesian coordinates of the mass in 
the stance phase, ሺx, yሻ, can be represented as  

ݔ ൌ  ሻ׎ሺ݊݅ݏ݈
ݕ ൌ  ሻ . (1)׎ሺݏ݋݈ܿ

Then, the velocity state can be obtained 
ሶݔ ൌ ሶ׎ሻ׎ሺݏ݋݈ܿ ൅ ݈ሶ݊݅ݏሺ׎ሻ 
ሶݕ ൌ െ݈݊݅ݏሺ׎ሻ׎ሶ ൅ ݈ሶܿ  ሻ  (2)׎ሺݏ݋

The kinematic energy ܶ and potential energy ܸ of the SLIP 
model are 
ܶ ൌ

ଵ

ଶ
݉ሺ݈ሶଶ ൅ ݈ଶ׎ሶ ଶሻ (3) 

and 
ܸ ൌ

ଵ

ଶ
ሺ݈ܭ െ ݈଴ሻଶ ൅  ሻ , (4)׎ሺݏ݋݈ܿ݃݉

respectively. The symbol ݈଴ and ݃ represent the natural length 
of the spring and gravity constant accordingly. Because the 
ground-contact point is fixed, the ground reacting force 
doesn’t do any work to the system. The energy of system is 
conservative. By the Lagrangian method 
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with energy terms shown in (3) and (4), the following 
dynamic equations of the SLIP model can be derived 

ሷ׎ ൌ
1
݈
ሺ݃݊݅ݏሺ׎ሻ െ 2݈ሶ׎ሶ ሻ 

݈ ሷ ൌ ሶ׎݈ ଶ െ
௄

௠
ሺ݈ െ ݈଴ሻ െ  ሻ (6)׎ሺݏ݋ܿ݃

The differential equation of the SLIP model shown in (6) can 
be expressed in the state-space form 
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which is utilized for implementation and numerical 
integration. 

Equation (6) and (7) reveals that the leg length is affected 
by three factors: (i) centrifugal force, (ii) elasticity of leg, and 
(iii) the gravity. Thus, its period is determined by these three 
factors. If the variation of angle and its derivative, ׎ and ׎ሶ , are 
both small, the factors (i) and (iii) only affects the equivalent 
point of the leg. Thus, the period of the leg is determined only 
by the factor (ii). In addition, the simplified version of the 
dynamic equations can be represented as 
݈ ሷ ൌ െ

௄

௠
ሺ݈ െ ݈଴ሻ , (8) 

and its solution can be derived as 
݈ሺݐሻ ൌ ܿଵ݊݅ݏ൫√ݐܭ ൅ ൯ߜ ൅ ܿ଴ . (9) 

This is actually a 1-D hopper, a reduced-order 1-DOF model 
of the 2-dimensional SLIP.  

In the flight phase, the motion is ballistic and affected by 
gravity only, so the equations of motion can be described as 
௙ݔ ൌ ௅ைݔ ൅  ݐሶ௅ைݔ

௙ݕ ൌ ௅ைݕ ൅ ݐሶ௅ைݕ െ
ଵ

ଶ
 ଶ  ,  (10)ݐ݃

where the subscript ݂  and ܱܮ  indicate the flight phase and 
lift-off, respectively. 

The SLIP model shown in (6) and (10) is a conservative 
system. Thus, the system dynamics in a full stride, including 
stance and flight phases, can be evaluated with pre-set three 
system parameters, ( ,݉,ܭ ݈ ), and chosen initial system 
conditions. The initial system conditions are usually given at 
the moment of touchdown (i.e., begin of the stance phase), 
which includes model landing angle ሺߚሻ,  touchdown speed 
( ௔ܸ௠௣), and touchdown angle  ሺߙሻ included by the touchdown 
velocity and horizontal line as shown in Fig. 1(b). First, the 
SLIP model touches the ground. The momentum drives the 
SLIP moving forward and compressing the spring, which 
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Fig. 1. (a) Intrinsic parameters of the SLIP model. (b)-(d) Motion of 
various models: (b) trajectory of the SLIP model over a stride; (c) 
trajectory of running motion with alternating SLIP models; (d) the hexapod 
robot runs with alternating tripod gait; (e) trajectory of each leg of the 
hexapod robot. 
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transfers the kinetic energy into elastic potential energy. Next, 
if the initial touchdown condition is right [9], the spring 
extends while the mass keeps moving forward, and the SLIP 
lifts off after the full stretch of the spring. Following that, the 
SLIP is in the ballistic flight phase, where gravity is the solo 
external force to the system. After a while, the SLIP touches 
down the ground again and repeats the motion cycle. 

Generally the animals divide the legs into two groups and 
perform the SLIP-like locomotion alternately as shown in Fig. 
1(c) [12]. For example, the human running is executed as a 
sequence of strides, which alternate between two legs. The 
insects also run with alternating tripod gait, where three 
supporting legs in each tripod act as a “virtual spring” for 
SLIP-like behavior owing to its intrinsic stability, since the 
center of mass can easily locate in the triangle formed by 
three supporting legs. Thus, strategy of bio-inspired 
alternating SLIP-like locomotion is adopted for the robot, and 
it is served as the “abstract” motion model of the robot.   

It is intuitively to coordinate three legs in the same group of 
the tripod to move in the same manner as shown in Fig. 1(d) 
since in this strategy: (1) the mapping from three real legs to 
one virtual leg is straight forward, where the spring constants 
of the former ones can be summed up and roughly equivalent 
to that of the latter one; (2) geometrically it is also reasonable 
to locate the virtual leg right below the COM where the 
middle real leg locates; (3) in the tripod stance phase, the 
moments generated from the fore-leg and hind-leg normal to 
the sagittal plane can be canceled out with each other. If the 
robot touches down the ground without any pitch angle, it 
maintains similar configuration at lift-off. This characteristic 
keeps sagittal-plane motion of the original 6-DOF rigid body 
robot motion close to the reduce-order SLIP model.  

To increase the ground clearance and to enhance the ability 
of obstacle negotiation, the leg motion in current robot design 
is periodical rotation in the same direction rather than the 
animals’ reciprocating motion, like the Buehler Clock in 
RHex [6]. This setting is shown in Fig. 1(c) and 1(d) in gray 
springs as well. As shown in Fig. 1(e), the time duration of the 
stance and aerial phases for each leg are denoted as ௦ܶ and ௔ܶ, 
respectively, and the rotation angles of the stance and aerial 

phases of each leg are denoted as ߠ௦  and ߠ௔ , accordingly. 
Thus, the time duration of the robot’s flight phase is ௔ܶ െ ௦ܶ. 
Because the time duration of the leg in the aerial phase is 
roughly about 1 െ 1.5 times of that in the stance phase as 
well as the rotation angles of the leg in the former phase is 
about 6 times than that in the letter phase, the leg rotating 
speed in the aerial phase is at least 3-6 times higher than that 
in the stance phase. This varying rotation speed could be 
achieved in a simple constant speed driving system by the 
usage of non-circular gears, since its speed ratio is variable 
and periodic. 

In addition, to generate periodic and continuing 
locomotion, the phase difference between two tripods has to 
be fixed at 180 degree, and this phase difference can be 
created easily by the gear installation with orientation offsets. 
Based on the above, it is feasible to drive the robot with single 
motor without position control effort, yet achieving the 
desired leg trajectories.  

About the source of driving system, commercial DC 
motors usually have high-speed and low-torque output. In 
contrast, the legged motion is usually operated in the opposite 
manner, low-speed and high-torque. For example, the stride 
frequency of animals varies from 1 to 6 Hz And the larger 
animals have lower stride frequencies [13]. The Stride 
frequency of 360g rat jogs is about 1.5-5 Hz, and that of 
9200g dog is about 2-4 Hz. For the robot targeting at 3000g, 
the stride frequency at 3-4Hz is adequate. Thus, a 
transmission with high speed-reduction characteristics is 
required between the motor and the non-circular gear pair. In 
addition, it is desirable to have the robot capable of standing 
without motor power, which implies the non-backdrivable 
transmission is preferred. As a result, in addition to the 
non-circular gear pair, worm and worm gear pair is adopted in 
the transmission system as well.  

Figure 2 depicts the illustrative sketch of the final robot 
design and component arrangement. The motor power is 
transmitted through a pair of spur gears to a long shaft 
installed in the fore-aft direction. The shaft is mounted with 
three worms, and through the matched worm gears, the motor 
power is transmitted to the front, middle, and hind shafts 
mounted in the lateral direction. Between these shafts and the 
legs, six pairs of the non-circular gears are installed to create 
the desired speed variation of each legs in one motion cycle as 
well as to generate the phase difference between two tripods.  

Through the model-based design process, the appearance 
of the final design is indeed similar to RHex [6]. However 
unlike the 6-DOF RHex which can generate various other 
kinds of behaviors such as stair climbing [14], pronking [15], 
bounding, etc. The robot can only perform alternating tripod 
gaits owing to the trade-off of simple single-motor driving 
system. Therefore it cannot turn by creating phase difference 
among legs like RHex, the designed robot is equipped with a 
steering mechanism on the front legs, to generate car-like 
turning motion as shown in Fig 2. In short, the novelty and 
uniqueness of this designed robot lies in its simplicity of two 
active DOFs with non-controlled motor drive, yet with 

 
Fig. 2. The 3-dimensional (3D) solid model of the robot, showing the 
arrangement of the components.  
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capability of dynamic ground locomotion and rough terrain 
negotiation. 

III. DESIGN OF THE NON-CIRCULAR GEAR PAIR 

Gear is one kind of transmission which can transfer 
rotation motion from one shaft to another one. The motion of 
gear is determined by the “imaginary” rolling circle named 
pitch circle. For an ordinary spur gear pair, two pitch circles 
contact and roll with each other all the time. Because of pure 
rolling, the instant velocity, v, at interface is the same, for 
both gears: 
ݒ ൌ ߱௜௡ሺߠሻݎ௜௡ሺߠሻ ൌ ߱௢௨௧ሺߠሻݎ௢௨௧ሺߠሻ , (11) 
where ω୧୬&ω୭୳୲  and r୧୬&r୭୳୲  are angular velocities and 
radius of the input and output gears, respectively. The 
symbol θ is the percentage orientation of the input gear in 
one-turn of rotation (i.e., range from 0 to 1). For non-circular 
gear pair, r varies with different θ, and because (11) still 
holds, the ω  varies accordingly, thus generating variable 
speed ratio in one turn of gear rotation. Since the distance 
between shafts, s, is still fixed 
ሻߠ௜௡ሺݎ ൅ ሻߠ௢௨௧ሺݎ  ൌ  (12) ݏ
the radius of the gear can be computed  
ሻߠ௢௨௧ሺݎ ൌ ሺ1/ݏ െ ߱௢௨௧ሺߠሻ/߱௜௡ሺߠሻሻ  (13) 
with given desired speed ratio ߱௢௨௧ሺߠሻ/߱௜௡ሺߠሻ. 
With the desired leg rotation profile shown in Fig. 1(e) as the 
output, ω୭୳୲, and constant-speed rotation from the motor as 
the input, ω୧୬, the speed ratio can be analytically computed. 

Figure 3(a) plots the  speed ratio of normal gait in one 
period (i.e., one turn of rotation). Red line indicates the 
constant-speed rotation of the input gear, which is normalized 
at one for simplicity. Green line segments depict the pattern 
of the pre-designed speed profile of the output gear, which is 
divided into 4 segments: low velocity region, acceleration 
region, high velocity region, and deceleration region. Since 

one-turn to one-turn rotation is designed, the areas under the 
green and red lines which represent the amount of rotations 
should be equal. In addition, the area  before a half of period 
roughly equal to θୱ shown in Fig. 1(d), representing the leg 
motion in stance phase. As mentioned before, this angle 
should be small to maintain the stable tripod gait. 
The speed profile of the output gear is further modified to a 
smooth curve using Fourier series, to reduce the dramatic 
acceleration and deceleration in transmission: 
 ω

୭୳୲
൫θ൯ ൌ

ଵ

ଶ
a଴ ൅ ∑ a୬ cos൫2πnθ൯ ൅ଶ

୬ୀଵ b୬ sin൫2πnθ൯ 

a୬ ൌ ׬2 Fሺtሻ כ cos ሺ2πθሻ݀ݐ
ଵ

଴
  

b୬ ൌ ׬2 Fሺtሻ כ sin ሺ2πθሻ݀ݐ
ଵ

଴
 . (14) 

The approximated smooth waveform is shown in blue curve 
in Fig. 3(a). Because Fourier series would not change the 
integral in one period, the area below blue curve is the same 
as that below green line segments. Thus, as long as the 
pre-design green line segments covers the same area as the 
blue line does, the constraint of equal rotation angle between 
input and output non-circular gears is automatically satisfies, 
even after smoothing.   

After adjusting the time ratio of different velocity regions 
and the low speed ratio to fit wanted gait, the desired speed 
profile of non-circular gears con be found. Figure 3(b) plots 
the pitch circles of the designed non-circular gear pair as well 
as the final teeth based on the involute geometry [16]. The 
design of single pair is complete.  

IV. DESIGN AND MODELING OF THE CIRCULAR LEG 

The desired leg stiffness can be roughly estimated by the 
locomotion characteristics of the animals. According to [13], 
the system weighted around 3kg  should have stride 
frequency ௦݂   in the range of 3 െ 4Hz. Because the robot 
utilizes the alternating tripod gaits, the leg rotation frequency 
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Fig. 4. The evaluation of the stiffness characteristic of the circular leg. 
Different ground contact points yield different spring constants of 1-DOF 
reduced-order springs. (a) illustration of the evaluation; (b) empirical 
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௟݂ is half, 1.5 െ 2Hz. Next, similar to the approach adopted 
by the biological research, the 1-DOF spring-mass model is 
utilized to estimate the leg stiffness [8, 9],  

௦݂ ൌ 2 ௟݂ ൌ
ଵ

ଶగ
ට௄

௠
 . (15) 

In addition, owing to the tripod locomotion, the stiffness (i.e., 
spring constant) of the real leg should be one-third of K, and 
the value is derived to be around 0.75KN/m. Thus number is 
adopted as the desired spring stiffness of the circular leg. 

The circular leg is a complex high-order system, whose 
motion involves the rolling behavior and change of stiffness. 
In order to take account of the rolling effect and the change of 
stiffness, the 1-DOF linear stiffness of the circular leg is 
empirically measured at various ground-contact points and 
with different compression force between the hip joint and the 
ground contact points as shown in Fig. 4(a). The contact 
points are spanned around 60° around the lower part of the 
circular leg. Then, the value of the stiffness at the median 
range is selected as the reduced-order 1-DOF stiffness of the 
circular leg. Figure 4(b) plots the measured forces versus 
displacements at these ground-contact points of one of the 
circular legs under evaluation, and the stiffness are derived to 
be varied from 0.7KN m⁄  to 1.7KN m⁄ . In this set of 
measurement, the spring constant 1.1KN m⁄  is chosen as the 
value which represents the reduced-order 1-DOF stiffness of 
the circular leg. This value is located at the median range of 
the original variant spring constants (ψ ൌ െ30° to 10°).  

Theoretically though a lower stiffness value around 
0.75KN m⁄  is desired, we found that the empirical circular 
legs with this stiffness are fragile and easy to break owing to 
their thin thickness or narrowed width. It cannot survive large 
deformation induced by dynamic load during robot 
locomotion. Because the stride frequency of the leg can be 
operated at a higher value by adequate motor driving, the 
stiffer circular legs with stiffness 1.1KN m⁄  described in the 
previous paragraph is adopted for experimental work. 
According to (15), the new desired stride frequency of the 
robot with this stiffness value is about  5 Hz .  Together with 
the higher stride frequency, the robot is still operated in the 
frequency around its natural one. In addition, for performance 
evaluation, the stiffness 1.1KN m⁄  and the diameter of the 
circular leg are utilized as the stiffness and length of the ideal 
SLIP model described in section II.  

V. PERFORMANCE EVALUATION 

Section II to IV describes various issues of designing a 
robot which is driven by a single motor and can performance 
dynamic behaviors. To evaluate the effectiveness of the 
strategy, a hexapod robot shown in Fig. 5(a) was built for 
experimental evaluation. Figure 5(b) shows the snapshot of 
the robot walking outdoor. The legs correctly move according 
to the designed alternating tripod gait, and consequently, the 
robot walks stably and smoothly as shown in Figure 6. When 
the leg stride period decreases, the motion of the robot enters 
the dynamic region where there exists certain aerial phase as 
shown in Fig. 5(c). To quantitatively evaluate whether the 
behavior of the robot matches the mathematical models, a 
series of robot running tests with different stride frequencies 
was executed under the ground truth measurement system 
(GTMS) with the 6-axis force plate on the ground. Thus, body 
state of the robot and ground reaction force data could be 
recorded. Because the SLIP is planar, the motion in the 
sagittal plane was extracted for analysis.  

Fig. 7(a) plots the displacement and velocity of the robot in 
the forward (x) and vertical (z) directions versus time with 
stride frequency 6.3Hz. The data is represented in the statistic 
manner, where the blue curve is the mean of several runs, and 
standard deviation at several time stamps are also plotted. The 
trajectory of the SLIP model in Fig. 7(b) computed according 
to (7) is also plotted for comparison. To compare the models 
with real robot locomotion more precisely, the initial states of 
the SLIP model simulation, including touchdown velocity 
and leg landing angle are roughly extracted from the recorded 
videos. Figure 7 shows that a moderate match of the body 
state between the actual robot and the SLIP model. The 
composition of the robot has certain difference than that of 
the SLIP model, and we believe the difference is the source of 
the discrepancy. First, the motion of the circular leg is in some 
level different than that of the linear spring with fixed 
stiffness owing to its high-DOF nature. In addition, the 
ground-contact exhibits slippage. Second, the energy status of 
the robot and the model is different. The SLIP model is 
conservative, so its motion relies on the momentum 
determined by the initial conditions Thus, if the stride 
frequency is low, the SLIP may not able to move forward. In 
contrast, the empirical robot is not energy conservative, 
which has motor power input to compensate the damping loss. 
When the robot walks slowly, the power from motor still 
moves the robot forward. Third, the rolling behavior may 

Fig. 5. Photos of the robot: (a) in its standing posture robot; (b) walking on 
the uneven terrain; (c) performing dynamic behavior with aerial phase.  

 
Fig. 6. The sequence pictures of running robot. Robot walks stably and 
smoothly with tripod gait. 
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create some discrepancy as well, especially in the forward 
velocity and the vertical displacement.   

Figure 8 plots the ground reaction forces of the robot 
operated with the stride frequency ௦݂ ൌ  The robot .ݖܪ 6.3
indeed exhibits running behavior with flight phase, which can 
be observed by the vertical ground reaction force data. In 
addition, the force pattern is close to the measurement of 
running animals.  

VI. CONCLUSION 

We report on the design of a simple bio-inspired hexapod 
robot with single-motor driving system. The non-circular 
gear pairs included in the transmission system generates the 
required speed variation of the leg between its stance phase 
and flight phase. In addition, with correct phase shift, the 
alternating tripod motion can be achieved. Thus, the robot can 
walk stably as the hexapod RHex which has one motor for 
each leg and is inspiration source of the robot design. The 
reduce-order 1-DOF model of the compliant circular leg is 
reported, which guides us to map the locomotion of the robot 
to the SLIP model. With correct design, the robot can perform 
SLIP-like locomotion, which is evaluated experimentally and 
quantitatively.  

Currently we are in the process of evaluating the effect of 
the stride frequency to the overall robot dynamic behavior in 
detail and to investigate the adequate model with rolling 
behavior for the circular leg. 
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Fig. 7. Comparison of the displacement, velocity (with dot) versus time (ݐ) 
between (a) the experimental robot running data and (b) the SLIP model in 
the forward direction (ݔ) and vertical direction (ݖ). The vertical I-shape 
bars (blue) indicate the standard deviations of the experimental data.  
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Fig. 8. Comparison of the ground reaction force ݂  between (a) the 
experimental robot running data and (b) the SLIP model in the forward 
direction and in the vertical direction. The vertical COM displacement is 
plotted below for reference.  
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