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Abstract— We report on a 9-axis inertial measurement unit
(IMU) which utilizes 3-axis angular velocity measurements
from rate gyros and 6-axis linear acceleration measurements
from three 2-axis accelerometers. This system is capable of
deriving linear acceleration, angular acceleration and angular
velocity via simple matrix operations, and it also releases
the requirement of accelerometer installation at the center of
mass as in the traditional IMU. An optimal configuration of
the system is proposed based on the analysis of rigid body
dynamics and matrix theory. We performed error analyses,
including position, orientation, and sensor noise, and we also
report the results of experimental evaluation. We believe the
analysis presented in this paper would benefit the practical
design of IMUs in the future.

I. INTRODUCTION
For several decades, inertial sensors [1] have been one

of the important categories of sensors utilized in various
applications, including navigation (robots, vehicles, rock-
ets, and etc) [2], state estimation for motion analysis [3]
or dynamic modeling, microsurgery [4], and sports injury
avoiding [5]. In modeling dynamics of legged robots,
information of external forces, position and orientation
states (including their 1st/2nd derivatives) are usually
required as essential information for constructing 2nd
order dynamic models, and the inertial sensors are
appropriate choices to provide some essential information
of states. A traditional inertial measurement unit (IMU)
is comprised of 3-axis acceleration measurement by
accelerometers installed at center of mass (COM) and 3-
axis angular velocity measurement by rate gyros. Though
full position/orientation state can be reconstructed by
models and filter technologies such as the Kalman filter
[6], such systems usually yield poor performance and
generate unbounded integration error due to their nature
of unobservability [7]. Thus, techniques of fusing IMU
with other positioning sensors (GPS [8], differential
GPS, magnetocompass, and vision system [9]) are widely
adapted. While translational displacement, velocity, and
acceleration as well as orientation and angular velocity
can all be measured by commercially available sensors,
the only state left unknown is angular acceleration.
Though this information can be derived by differentiation
of gyro signals, it is usually noisy. Therefore, in addition
to improving the performance of the gyros and associated
data acquisition systems, searching for new techniques

This work is supported by National Science Council (NSC),
Taiwan, under contract NSC 97-2218-E-002-022 and by Tzong Jwo
Jang Educational Foundation under contract 97-S-A07.

Authors are with Department of Mechanical Engineering, Na-
tional Taiwan University, No.1 Roosevelt Rd. Sec.4, Taipei, Taiwan
peichunlin@ntu.edu.tw

which are capable of yielding reliable and accurate
angular acceleration state plays a nontrivial role in the
development of inertial measurement units.

In rigid body dynamics, linear accelerations of any two
points on the body, angular acceleration, and angular
velocity of the body are related in a specific mathe-
matical equation based on Newton Mechanics (detailed
in (1)). Since the linear acceleration and the angular
velocity can be measured directly by the accelerometers
and the rate gyros, the angular acceleration can readily
be derived by utilizing these measurements together with
the Newtonic equation. For decades, researchers have
tested various methods attempting to recover all three
states (totally 9 scalar unknowns) via a minimum set of
sensors together with specific computational algorithms,
especially in the development of accelerometer-based
systems [7], [10]–[12] without utilization of gyros due
to various considerations, such as prices, calibration
procedure, electronics, and etc. In recent years with
the advanced development in micro electrical mechanical
systems (MEMS), not only the accelerometers but also
multi-axis MEMS rate gyros have become commercially
available, low-cost yet with promising performance. All
these reasons motivate authors to revisit the question of
how to select, place, and orient inertial sensors in order
to yield better performance and feasible solutions for
practical implementation.

Here, we investigate a 9-axis ”advanced IMU” contain-
ing 3-axis angular velocity measurements from the rate
gyros and 6-axis linear acceleration measurements from
the accelerometers at three distinct locations. Comparing
to a traditional IMU, this advanced IMU provides in-
stant angular acceleration derivation via linear operation
without any differentiation or integration. In addition,
the flexible positioning of three 2-axis accelerometers
releases the strong constraint of accelerometer instal-
lation at COM in the traditional IMU. Moreover, if
the accelerometers are capable of 3-axis measurement,
the sensor orientation error due to installation can be
thoroughly eliminated through a calibration procedure.

Section II introduces the idea of this 9-axis sensory
system based on the analysis of rigid body dynamics,
followed by Section III which describes the positioning
of sensors in detail. Section IV presents the error anal-
ysis of the system and briefly describes the calibration
procedure. Section V reports the results of experimental
evaluation, and Section VI concludes the work.
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II. CONSTRUCTION OF SENSING SYSTEM

The acceleration vector, ap, in an inertial frame W
of a point, p, rigidly attached to an accelerating body
frame B with origin, o, is a function of the body’s angular
velocity, ω, and angular acceleration, ω̇, as well as the
translational acceleration of the body origin, ao, given
by

ap = ao + ω̇ × rop + ω × (ω × rop), (1)

where rop, the fixed position vector of p relative to
the body, is presumed known á priori. In general, we
are interested in utilizing the measurement from com-
mercially available accelerometers and gyros to derive
9 unknown scalar body states on the right side of the
equation, including the COM translational acceleration,
aCOM , (usually equal to the origin of body frame, ao),
and the angular acceleration and velocity, ω̇ and ω,

ao := aCOM =
[

ax ay az

]T

ω̇ =
[

ω̇x ω̇y ω̇z

]T

ω =
[

ωx ωy ωz

]T
.

The 1-axis rate gyro ”fixed” on the body measures the
projected angular velocity of spatial body motion, bωi,
along the sensing direction ŝi,

bωi = ωT · ŝi, (2)

where motion is with respect to the inertial frame but
the coordinates are represented in the body frame (i.e.
letter ”b” on the upper left corner of the state). Likewise,
the 1-axis accelerometer installed at the point, p, on the
body measures the projected linear acceleration in the
similar manner,

baj = ap · ŝj = [ao + ω̇ × rop + ω × (ω × rop)] · ŝj . (3)

Since the position vector, rop , and sensing direction,
ŝi, are invariant with respect to the body frame B, it
motivates us to represent the coordinates of dynamic
equation (1) in the body frame at every instant while
the measured states of the moving rigid body are still
with respect to the initial frame:

bap −b ω × (bω ×b rop) =b ao +b ω̇ ×b rop. (4)

In the following content all the equations will be repre-
sented in the body coordinates, and notations ”b” will
be omitted for clear equation presentations. Presumably
we have six 1-axis linear acceleration measurements from
the accelerometers, am, and three 1-axis angular velocity
measurements from the rate gyros, wm,

am =
[

a1 a2 a3 a4 a5 a6

]T

wm =
[

w1 w2 w3

]T
,

with known sensor positions, rk, and orientations ŝk, on
the body; the left side of (4) can be computed, and con-
sequently the remaining 6 unknown scalar acceleration
states on the right side,

xvar :=
[

ao ω̇
]T

, (5)

with respect to the inertial frame can be derived by
simple linear computation. This procedure completes the
computation of desired body state that we will proceed
to detail.

Without loss of generality, we can arrange three 1-axis
gyros such that the sensing directions, ŝi i=1,2,3, align
with three principal axes of the body frame, ŝ1 = êx, ŝ2 =
êy, ŝ3 = êz. In this arrangement, output of the rate gyros
readily represents one of the desired body states: angular
velocity, ω = wm. Similarly, six 1-axis accelerometers
can be oriented to measure the linear accelerations,
am, along the three principal axes of body frame B as
well, each axis with two measurements for symmetrical
consideration. Instead of the computation of the inner
products described in (2) and (3), computation in the
current arrangement of sensing directions only requires
the selection of one out of three scalar components of
the dynamic equation (4).

Now the question lies in how to place these six 1-axis
accelerometers so the remaining unknown state, xvar,
can be successfully derived. Assuming the locations of six
1-axis accelerometers are defined by six position vectors,
r =

[
r1 r2 r3 r4 r5 r6

]
, where rj behaves the

same as rop defined in (4), and assuming the sensing di-
rections of the sensors are along with êx, êy, êz, êx, êy, êz,
respectively (as shown in Figure 1(a)), the left side of
(4) can readily be computed with sensor measurements
am and wm:

qj := aj − (ω × (ω × rj)) · êk j=1∼6 k=1,2,3,1,2,3

q :=
[

q1 q2 q3 q4 q5 q6

]T

= am − W(r)wm6.
(6)

W(r) and wm6 are the expanded forms of double
cross products between angular velocity and
position vectors, in which the gyro measurement,
wm, is represented in the quadratic form, wm6 =[

w2
1 + w2

2 w2
1 + w2

3 w2
2 + w2

3 w1w2 w1w3 w2w3

]T .
Combining the six scalar equations defined in (4), (5),
and (6), the linear system of equations can be
represented as q = am − W(r)wm6 = S(r)xvar, where
S(r) is the 6 × 6 matrix,

S(r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 r1z −r1y

0 1 0 −r2z 0 r2x

0 0 1 r3y −r3x 0
1 0 0 0 r4z −r4y

0 1 0 −r5z 0 r5x

0 0 1 r6y −r6x 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)
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Fig. 1. Three different arrangements of six 1-axis acceleration
measurements: (a) Six 1-axis measurements at six distinct loca-
tions, (b) Three 2-axis measurements at three distinct locations,
(c) Two 3-axis measurements at two distinct locations.

The unknown acceleration states can be derived by the
matrix operation

xvar = S(r)−1am − S(r)−1W(r)wm6, (8)

and this equation reveals that the extraction of the
desired acceleration data, xvar, now hinges upon the rank
and numerical condition of the ”structure” matrix, S(r),
which is solely a function of positions of accelerometers,
r. Since the positions are known á priori and are fixed
in the body coordinates, the following task lies on the
allocation of accelerometers.

III. SENSOR ALLOCATION
The rise of MEMS sensing technology has yielded

commercially available low-cost MEMS accelerometers
that have better performance, lower prices, and smaller
packaging than those of a decade ago. More importantly,
the availability of multi-axis accelerometers1 significantly
simplifies the original complicated electronic and spa-
tial design of multi-sensor systems for multi-axis state
measurements. Therefore, the spatial allocations of six
1-axis acceleration measurements presented in this paper
can be categorized into three different scenarios: (1)
two 3-axis accelerometers (two rjs) positioned at two
distinct locations, (2) three 2-axis accelerometers (three
rjs) positioned at three distinct locations, and (3) six

1For example, Analog Devices Inc, Freescale Semiconductor, VTI
Technologies, Measurement Specialties Inc/Schaevitz, and STMi-
croelectronics all produce 3-axis MEMS-based accelerometers.

1-axis accelerometers (six rjs) positioned at six distinct
ocations. We will discuss these cases separately and focus
on the invertibility of the structure matrices, S(r), and
their numerical conditions detailed as follows.

A. System with two 3-axis Acceleration Measurements

In this scenario six position vectors are combined into
two distinct position vectors: r1(= r2 = r3) and r4 =
(r5 = r6), containing measurements of {a1, a2, a3} and
{a4, a5, a6} accordingly as shown in Figure 1(c). The
structure matrix, S(r), is composed of two copies of the
dynamic equation (4). For each copy (upper/lower three
rows) , the first 3× 3 identity matrix the corresponds to
the computation of the COM linear acceleration, and the
second 3×3 skew-symmetric matrix represents the cross
product between the position vector and the angular
acceleration vector. Unfortunately, the determinant of
the structure matrix, S(r), is always 0, which indicates
that the matrix is not invertible and further implies that
the desired acceleration state can’t be derived in this
configuration. Apparently 6 scalar position variables in
r1 and r4 are not sufficient to construct six independent
vectors in the structure matrix.

B. System with three 2-axis Acceleration Measurements

Following similar logic presented in the previous sub-
section, the general spatial configuration of a system
with three 2-axis acceleration measurements is depicted
in Figure 1(b) where three distinct position vectors
r1(= r2), r3(= r4), r5(= r6), contain measurements of
{a1, a2}, {a3, a4}, and {a5, a6}, respectively. In this
scenario, the matrix is composed by three copies of
two differently selected scalar components of the spatial
dynamic equation (4). The determinant of this 9-variable
structure matrix, S32(r), can be organized as:

det(S32(r)) = −(r1x − r5x)(r5y − r3y)(r3z − r1z)
−(r5x − r3x)(r3y − r1y)(r1z − r5z),

(9)
and this indicates that the arrangement of sensor po-
sitions is crucial in order to avoid singularity of the
structure matrix. Geometrically, considering a triangle
formed by the relative position vectors of sensor po-
sitions, the six terms in (9) represent the components
of projected vectors of r13, r35, r51 on yz, xy, and
zx planes respectively. Various configurations make the
determinant of S32(r) zero when the relative positions
of accelerometers satisfy the equation (9). For example:
when the positions of three sensors have the same x,
y, or z components — i.e. the plane composed by the
positions of the three sensors (hereafter referred to as
the ”sensor plane”) is parallel to the xy, yz, or zx plane
(”sensing plane”, the plane spanned by the directions
of two sensing vectors). More generally, no matter what
orientation of principal axes are, this is also true as long
as the sensor plane is parallel to one of three sensing
planes.
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Fig. 2. Configuration of the systems with the best conditioned
structure matrices: (a) system with three 2-axis measurements at
three distinct locations, (b) system with six 1-axis measurements
at six distinct locations.

The condition number defined as the ratio of the
largest to the smallest singular values of the matrix fur-
ther indicates the quality of the inversion. The singular
values are determined by high-order polynomials (in the
entries of the sensor positions) which is harder to analyze
symbolically, yet there is every reason to expect that
the condition number is very sensitive to the ”shape”
and ”magnitude” of the sensor positions relative to each
other and their locations relative to the COM. Therefore,
the general behavior of condition number vs. sensor
position can be investigated numerically by moving sen-
sor positions spatially with respect to the current body
coordinates. In practice, numerical exploration suggests
that the configuration of the three 2-axis accelerometers
system shown in Figure 2(a) yields the best condition
number 2. Interestingly, because the structure matrix
combines entries with and without physical scale both
in the same rows — ”1” in the first 3×3 identity matrix
are dimensionless, and the second 3× 3 skew-symmetric
matrix has unit of ”length” — it turns out there is
actually a preferred linear dimension of this system at
which the resulting condition number is optimal. For
example, a physical installation of sensors with l = 10cm
should use ”decimeter” as the unit which sets l = 1,
not centimeter (l = 10) or meter (l = 0.1) which yield
large condition numbers 20 and 10 respectively. The
condition number of the matrix is purely determined
by the relative magnitudes of its matrix elements; thus,
choose a right unit so the magnitudes of the elements
close to the optimum condition will reduce the additional
error induced by the matrix inversion.

C. System with Six 1-axis Acceleration Measurements
This most general case has been described in Section

II and is depicted in Figure 1(a). The structure matrix
shown in (7) is a function of 12 scalar position variables.
The determinant of structure matrix, S(r) still contains
16 terms but is not as constructive as S32(r) shown
in Section III-B. Numerical exploration reveals that
the configuration shown in Figure 2(b) yields a perfect
condition number of 1 when the length scale is 1.

The system in this configuration requires 6 sets
of sensor modules positioned on both sides of three

principal axes with equal distances, and this increases
the complexity of space layout, and both electronic
and mechanical designs. In addition, the orientational
installation error of each 1-axis accelerometer most likely
counteracts the advantage of the perfect structure matrix
inversion, keeping noise levels the same. Therefore, in the
following sections we focus on the analysis of the system
described in the previous Section III-B which requires
3 sets of sensor modules, half in comparison with the
current one.

IV. ERROR ANALYSIS AND CALIBRATION

Equation below constructed by importing the best
configuration parameters shown in Figure 2(a) into (8)
describes the numerical relation between the acceleration
outputs and the sensor inputs:

[
ax ay az ω̇x ω̇y ω̇z

]T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 m 0 0
0 m 0 0 m 0
0 0 m 0 0 m
n n n −n −n −n
−n −n n n n −n
n −n n −n n −n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 −1 0
0 0 0 1 0 1
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

w2
1 + w2

2

w2
1 + w2

3

w2
2 + w2

3

w1w2

w1w3

w2w3

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

where m = 0.5 and n = 0.25. Here, an error analysis
is performed to evaluate the effect of each parameter on
the final acceleration state. The error equation is defined
as follows: E(X,Δe) = |X−X∗|/|X∗|, where Δe denotes
the parameter with small error (or sensor noise), and X
and X∗ denotes the state of interest and its nominal
value, respectively. Since the optimal configuration is
symmetric with respect to three principal axes, similar
results are expected for all sensing axes. Thus, only
analyses of ax and ω̇x are presented. Higher order terms
are ignored.

A. Sensor Noise

The effect of accelerometer noise, Δai, and rate gyro
noise, Δwi, on the state ax and ω̇x are listed below:

E(ax,Δai) = Δai

a1+a4−2(w2
2+w2

3) i=1,4 or = 0 i=2,3,5,6

E(ax,Δwi) = 0 i=1 or ≈ 4wiΔwi

a1+a4−2(w2
2+w2

3) i=2,3

E(ω̇x,Δai) = Δai

a1+a2+a3−a4−a5−a6+4w1w2+4w1w3 i=1,2,3

E(ω̇x,Δai) = − Δai

a1+a2+a3−a4−a5−a6+4w1w2+4w1w3 i=4,5,6

E(ω̇x,Δw1) = − 4(w2+w3)Δw1
a1+a2+a3−a4−a5−a6+4w1(w2+w3)

E(ω̇x,Δwi) = − 4w1Δwi

a1+a2+a3−a4−a5−a6+4w1(w2+w3) i=2,3

The trend matches the system configuration (or formu-
lation of (10)) which reveals that: (1) linear acceleration
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at the COM is only affected by the accelerometer
measurements whose sensing directions are parallel to
those specific motion directions. Thus, only sensor noise
Δa1 and Δa4 have impacts on the state ax as shown in
the first two equations. Contrarily, angular velocity has
opposite effects as shown in the 3rd and 4th equations.
(2) Since the positions of all three 2-axis accelerometers
have equal position offsets with respect to all three
principal axes in the current configuration, measured
body angular acceleration is affected by all accelerometer
measurements with equal significance as shown in the 5th
and 6th equations. In addition, the small coefficients in
these equations also confirm that the structure matrix
is well-conditioned — the variations of sensor noises do
not alter estimated state significantly.

B. Accelerometer Positioning Error

The effect of accelerometer positioning error,
Δrij i=1,2,3,4,5,6;j=x,y,z, on the state ax and ω̇x are listed
below:

E(ax,Δr5x) = E(ax,Δr5y) = E(ax,Δr5z) = 0
E(ax,Δrix) = (w2

2+w2
3)Δrix

a1+a4−2(w2
2+w2

3) i=1,3

E(ax,Δriy)
≈ a1−a2+a3−a4+a5−a6−4(w1w2−w1w3+w2w3)Δriy

4(a1+a4−2(w2
2+w2

3)) i=1,3

E(ω̇x,Δr5x)
≈ (a1−a4+4w1w2+4w1w3)Δr5x

2(a1+a2+a3−a4−a5−a6+4w1w2+4w1w3)

E(ω̇x,Δr1x)
≈ (−a1+a2−a3+a4−a5+a6−4w1w2−4w1w3+4w2w3+4w2

2+4w2
3)Δr1x

4(a1+a2+a3−a4−a5−a6+4w1w2+4w1w3)

The position vector r5 doesn’t have any effect on ax since
the accelerometer with this position vector doesn’t have
any sensing direction along with the x direction as shown
in Figure 2(a) or (10). Δrix i=1,3 affects ax through
angular velocity terms, but not through a1 and a4 since
the sensing direction is parallel to the direction of error.
Only positioning errors perpendicular to the x-axis affect
the measurement of ax from all sensors, and they are
equally significant due to equal position offsets with re-
spect to the principal axes. Effect of Δrix and Δriz i=1,3

on ax have similar formulations so the presentation of
the later one is omitted. Angular acceleration, ω̇x, is
determined by all sensor measurements shown in (10);
thus the analysis is presented in much more complicated.
The error in r5x, r3y, and r1z have similar effect because
the error directions are perpendicular to the sensing
directions, and the the presentation of the later two
are omitted. The error in the remaining six directions
(r1x, r1y, r3x, r3z, r5y, r5z) also have similar effects on
ω̇x due to symmetric reason, so only E(ω̇x,Δr1x) is
presented.

If the actual body configuration doesn’t allow sym-
metric sensor installation the same as the best situation
shown Figure 2(a), a new structure matrix and its inverse
can be recalculated. Thus, the positioning error here

specifically refer to the resolution of installation error,
not including the error due to unsymmetrical positioning.

C. Accelerometer Orientation Error and Calibration

If the sensing directions of the sensors do not not align
perfectly with their assigned directions (here, the princi-
pal axes), the sensors will response to the accelerations
in other axes, which cause severe state reconstruction
errors, especially when the accelerations in different
principal axes varying significantly with time. Since
the MEMS 3-axis accelerometers are widely available
with comparable cost to the 2-axis accelerometers, the
feasible solution to this problem due to installation error
is to use 3-axis accelerometers and to perform a 3-
dimensional calibration procedure briefly described as
follows. Assuming the 3-axis measurements in the MEMS
accelerometers are mutually orthogonal to each other,
the relation of these axes to the principal axes of the
body frame is a rotation matrix. The parameters of
the matrix can be found by performing a 3-dimensional
rotation of the system: first, align the principal axes of
the system to those of the world frame. Second, rotate
the system slowly along with three principal axes of the
world frame sequentially; in the meantime collect data
of sensor measurements and actual body orientation in
order to yield acceleration due to gravity. Then perform
the least square technique to find the parameters.

V. EXPERIMENT RESULTS

A benchtop apparatus with one controllable rotational
degree of freedom was utilized for experimental evalua-
tion of the proposed system. The required measurements
of three 2-axis accelerations and one 3-axis angular
velocity of the IMU system were measured by three 3-
axis accelerometers (ADXL330, Analog Device) and two
2-axis rate gyros (IDG-300, InvenSense), respectively. An
additional 3-axis accelerometer was also mounted at the
COM for performance comparison. Data were collected
by a real-time embedded control system (sbRIO-9632,
National Instruments) running at 1KHz. The COM of
the IMU system was positioned on the rotating appa-
ratus with designated distance, and the apparatus was
driven in a sinusoidal motion under PID position control.
Thus, the COM was subjected to tangential, normal, and
angular accelerations. In current measurements, direc-
tion of the rotating axis is parallel to that of the gravity,
so the gravity induced acceleration does not affect the
measurements. Further 3-dimensional accelerating tests
will be perform after the IMU system is fused with
orientation sensors which can remove gravity effectively
from the accelerometer measurements.

Figure 3 plots the theoretical estimated and experi-
mental measured body states. Because of position control
and unavoidable apparatus vibration during varying-
speed rotating motion, the experimentally measured
states introduce slightly time delay and measurement
noises as opposed to the smooth sinusoidal curves derived
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Fig. 3. Plots of theoretical estimated (dashed lines) and ex-
perimental measured body states (solid lines: the 9-axis IMU;
dotted lines: the traditional IMU). (a),(b),(c),(d) denote tangential
acceleration, normal acceleration, angular acceleration, and angular
velocity respectively.

in the theoretical calculations, but all states deliver
correct measurements in the sense of magnitudes and
trends. The 9-axis IMU system delivers comparable
measurement of the linear acceleration at COM in com-
parison with that from the traditional IMU which has
measurements directly at the designated location. This
indicates that one of the merit of the 9-axis IMU system
can indeed be achieved — releasing the requirement of
direct acceleration measurement at the COM as in the
traditional IMU. In addition, while the traditional IMU
can only derive noisy angular acceleration by differen-
tiation of the angular velocity measurement, the 9-axis
IMU system deliver the nice measurement. This confirms
the second merit of the 9-axis IMU — the angular
acceleration can be yielded via simple computation as
proposed in the previous sections.

VI. CONCLUSIONS AND FUTURE WORKS
We have investigated a 9-axis ”advanced IMU” which

utilizes 3-axis angular velocity measurement from rate
gyros and 6-axis linear acceleration measurement from
three 2-axis accelerometers. Design of this sensory system
was based on the analysis of rigid body dynamics and
matrix theory, and an optimal configuration of the
system with three 2-axis accelerometers was proposed.

The experimental results confirmed that though the
sensors of the 9-axis IMU do not located at the COM,
it is capable of delivering comparable linear acceleration
measurement in comparison with the traditional IMU.
In addition, it yields correct angular acceleration as the
equation predicts. We also performed error analyses of
the optimized system, including positioning, orientation,
and sensor noise.

Currently we are in the process of testing the system in
reality under various different accelerating conditions. In
the meantime, we are searching for suitable position and
orientation sensors to be fused with the proposed IMU
system, thus to construct an observable system capable
of accurate full body state estimation for analysis of
dynamic locomotion in the legged robots.
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